OS X ABI Mach-O File Format Reference

Developer

Contents

OS X ABI Mach-O File Format Reference 4
Overview 4
Basic Structure 4
Header Structure and Load Commands 5
Segments 6
Sections 7
Data Types 9
Header Data Structure 9
Load Command Data Structures 16
Symbol Table and Related Data Structures 44
Relocation Data Structures 57
Universal Binaries and 32-bit/64-bit PowerPC Binaries 63

Document Revision History 67

2009-02-04 | Copyright © 2003, 2009 Apple Inc. All Rights Reserved.

2

Figures and Tables

OS X ABI Mach-O File Format Reference 4

Figure 1 Mach-O file format basic structure 5
Table 1 The sections of a __TEXT segment 8
Table 2 The sections of a __DATA segment 8
Table 3 The sections of a __IMPORT segment 9
Table 4 Mach-O load commands 16

2009-02-04 | Copyright © 2003, 2009 Apple Inc. All Rights Reserved.

3

OS X ABI Mach-O File Format Reference

Declared in fat.h
loader.h
nlist.h
reloc.h

Overview

This document describes the structure of the Mach-O (Mach object) file format, which is the standard used to
store programs and libraries on disk in the Mac app binary interface (ABI). To understand how the Xcode tools
work with Mach-O files, and to perform low-level debugging tasks, you need to understand this information.

The Mach-O file format provides both intermediate (during the build process) and final (after linking the final
product) storage of machine code and data. It was designed as a flexible replacement for the BSD a.out
format, to be used by the compiler and the static linker and to contain statically linked executable code at
runtime. Features for dynamic linking were added as the goals of OS X evolved, resulting in a single file format
for both statically linked and dynamically linked code.

Basic Structure

A Mach-O file contains three major regions (as shown in Figure 1):

= At the beginning of every Mach-O file is a header structure that identifies the file as a Mach-O file. The
header also contains other basic file type information, indicates the target architecture, and contains flags
specifying options that affect the interpretation of the rest of the file.

- Directly following the header are a series of variable-size load commands that specify the layout and
linkage characteristics of the file. Among other information, the load commands can specify:

= Theinitial layout of the file in virtual memory
« The location of the symbol table (used for dynamic linking)
= The initial execution state of the main thread of the program

« The names of shared libraries that contain definitions for the main executable’s imported symbols

2009-02-04 | Copyright © 2003, 2009 Apple Inc. All Rights Reserved.

4

0S X ABI Mach-O File Format Reference
Overview

- Following the load commands, all Mach-O files contain the data of one or more segments. Each segment
contains zero or more sections. Each section of a segment contains code or data of some particular type.
Each segment defines a region of virtual memory that the dynamic linker maps into the address space of
the process. The exact number and layout of segments and sections is specified by the load commands
and the file type.

= In user-level fully linked Mach-O files, the last segment is the link edit segment. This segment contains
the tables of link edit information, such as the symbol table, string table, and so forth, used by the dynamic
loader to link an executable file or Mach-O bundle to its dependent libraries.

Figure 1 Mach-O file format basic structure

Header

Load commands

Segment command 1

Segment command 2

Data
- Section 1 data
cC
qg’ Section 2 data
2 -
n Section 3 data
Section 4 data
[aV)
% Section 5 data
€
()]
[0
n -
Section n data

Various tables within a Mach-O file refer to sections by number. Section numbering begins at 1 (not 0) and
continues across segment boundaries. Thus, the first segment in a file may contain sections 1 and 2 and the
second segment may contain sections 3 and 4.

When using the Stabs debugging format, the symbol table also holds debugging information. When using
DWARF, debugging information is stored in the image’s corresponding dSYM file, specified by the
uuid_command (page 19) structure

Header Structure and Load Commands

A Mach-O file contains code and data for one architecture. The header structure of a Mach-O file specifies the
target architecture, which allows the kernel to ensure that, for example, code intended for PowerPC-based
Macintosh computers is not executed on Intel-based Macintosh computers.

2009-02-04 | Copyright © 2003, 2009 Apple Inc. All Rights Reserved.

5

0S X ABI Mach-O File Format Reference
Overview

You can group multiple Mach-O files (one for each architecture you want to support) in one binary using the
format described in “Universal Binaries and 32-bit/64-bit PowerPC Binaries” (page 63).

Note: Binaries that contain object files for more than one architecture are not Mach-O files. They
archive one or more Mach-O files.

Segments and sections are normally accessed by name. Segments, by convention, are named using all uppercase
letters preceded by two underscores (for example, __TEXT); sections should be named using all lowercase

letters preceded by two underscores (for example, __text). This naming convention is standard, although

not required for the tools to operate correctly.

Segments

A segment defines a range of bytes in a Mach-O file and the addresses and memory protection attributes at
which those bytes are mapped into virtual memory when the dynamic linker loads the application. As such,
segments are always virtual memory page aligned. A segment contains zero or more sections.

Segments that require more memory at runtime than they do at build time can specify a larger in-memory
size than they actually have on disk. For example, the __ PAGEZERO segment generated by the linker for
PowerPC executable files has a virtual memory size of one page but an on-disk size of 0. Because __PAGEZERO
contains no data, there is no need for it to occupy any space in the executable file.

Note: Sections that are to be filled with zeros must always be placed at the end of the segment.
Otherwise, the standard tools will not be able to successfully manipulate the Mach-O file.

For compactness, an intermediate object file contains only one segment. This segment has no name; it contains
all the sections destined ultimately for different segments in the final object file. The data structure that defines
a section (page 23) contains the name of the segment the section is intended for, and the static linker places
each section in the final object file accordingly.

For best performance, segments should be aligned on virtual memory page boundaries—4096 bytes for
PowerPC and x86 processors. To calculate the size of a segment, add up the size of each section, then round
up the sum to the next virtual memory page boundary (4096 bytes, or 4 kilobytes). Using this algorithm, the
minimum size of a segment is 4 kilobytes, and thereafter it is sized at 4 kilobyte increments.

The header and load commands are considered part of the first segment of the file for paging purposes. In an
executable file, this generally means that the headers and load commands live at the start of the __ TEXT
segment because that is the first segment that contains data. The __PAGEZERO segment contains no data on
disk, so it’s ignored for this purpose.

2009-02-04 | Copyright © 2003, 2009 Apple Inc. All Rights Reserved.

6

0S X ABI Mach-O File Format Reference
Overview

These are the segments the standard OS X development tools (contained in the Xcode Tools CD) may include
in an OS X executable:

The static linker creates a __PAGEZERO segment as the first segment of an executable file. This segment
is located at virtual memory location 0 and has no protection rights assigned, the combination of which
causes accesses to NULL, a common C programming error, to immediately crash. The __ PAGEZERO segment
is the size of one full VM page for the current architecture (for Intel-based and PowerPC-based Macintosh
computers, this is 4096 bytes or 0x1000 in hexadecimal). Because there is no data in the __PAGEZERO
segment, it occupies no space in the file (the file size in the segment command is 0).

The __TEXT segment contains executable code and other read-only data. To allow the kernel to map it
directly from the executable into sharable memory, the static linker sets this segment’s virtual memory
permissions to disallow writing. When the segment is mapped into memory, it can be shared among all
processes interested in its contents. (This is primarily used with frameworks, bundles, and shared libraries,
but it is possible to run multiple copies of the same executable in OS X, and this applies in that case as
well.) The read-only attribute also means that the pages that make up the __TEXT segment never need
to be written back to disk. When the kernel needs to free up physical memory, it can simply discard one
or more __TEXT pages and re-read them from disk when they are next needed.

The __DATA segment contains writable data. The static linker sets the virtual memory permissions of this
segment to allow both reading and writing. Because it is writable, the __DATA segment of a framework
or other shared library is logically copied for each process linking with the library. When memory pages
such as those making up the __DATA segment are readable and writable, the kernel marks them
copy-on-write; therefore when a process writes to one of these pages, that process receives its own private
copy of the page.

The __0BJC segment contains data used by the Objective-C language runtime support library.

The __IMPORT segment contains symbol stubs and non-lazy pointers to symbols not defined in the
executable. This segment is generated only for executables targeted for the 1A-32 architecture.

The __ LINKEDIT segment contains raw data used by the dynamic linker, such as symbol, string, and
relocation table entries.

Sections

The __TEXT and __DATA segments may contain a number of standard sections, listed in Table 1, Table 2 (page
8), and Table 3 (page 9). The __0BJC segment contains a number of sections that are private to the
Objective-C compiler. Note that the static linker and file analysis tools use the section type and attributes
(instead of the section name) to determine how they should treat the section. The section name, type and
attributes are explained further in the description of the section (page 23) data type.

2009-02-04 | Copyright © 2003, 2009 Apple Inc. All Rights Reserved.

7

0S X ABI Mach-O File Format Reference

Overview

Table 1 The sections of a __ TEXT segment

Segment and section name

__TEXT,__text

_ TEXT,__cstring

__TEXT,__picsymbol_-
stub

__TEXT,__symbol_stub

__TEXT,__const

__TEXT,__literal4d

__TEXT,__literal8

Contents

Executable machine code. The compiler generally places only executable
code in this section, no tables or data of any sort.

Constant C strings. A C string is a sequence of non-null bytes that ends
with a null byte (*\0"'). The static linker coalesces constant C string
values, removing duplicates, when building the final product.

Position-independent indirect symbol stubs. See “Position-Independent
Code” in Mach-0 Programming Topics for more information.

Indirect symbol stubs. See “Position-Independent Code” in Mach-O
Programming Topics for more information.

Initialized constant variables. The compiler places all nonrelocatable data
declared const in this section. (The compiler typically places uninitialized
constant variables in a zero-filled section.)

4-byte literal values. The compiler places single-precision floating point
constants in this section. The static linker coalesces these values,
removing duplicates, when building the final product. With some
architectures, it's more efficient for the compiler to use immediate load
instructions rather than adding to this section.

8-byte literal values. The compiler places double-precision floating point
constants in this section. The static linker coalesces these values,
removing duplicates, when building the final product. With some
architectures, it's more efficient for the compiler to use immediate load
instructions rather than adding to this section.

Table 2 The sections of a __DATA segment

Segment and section name
__DATA,__data

__DATA,__la_symbol_ptr

_ DATA,__nl_symbol_ptr

Contents
Initialized mutable variables, such as writable C strings and data arrays.

Lazy symbol pointers, which are indirect references to functions
imported from a different file. See “Position-Independent Code” in
Mach-O Programming Topics for more information.

Non-lazy symbol pointers, which are indirect references to data items
imported from a different file. See “Position-Independent Code” in
Mach-0 Programming Topics for more information.

2009-02-04 | Copyright © 2003, 2009 Apple Inc. All Rights Reserved.

8

0S X ABI Mach-O File Format Reference

Data Types
Segment and section name Contents
_ DATA,__dyld Placeholder section used by the dynamic linker.
__DATA,_const Initialized relocatable constant variables.
__DATA, _mod_init_func Module initialization functions. The C++ compiler places static
constructors here.
__DATA, __mod_term_func Module termination functions.
__DATA, __bss Data for uninitialized static variables (for example, static int ij;).
__DATA,_common Uninitialized imported symbol definitions (for example, int 1i;)
located in the global scope (outside of a function declaration).
Table 3 The sections of a __ IMPORT segment
Segment and section name Contents
__IMPORT,__jump_table Stubs for calls to functions in a dynamic library.
__IMPORT,__pointers Non-lazy symbol pointers, which are direct references to functions

imported from a different file.

Note: Compilers or any tools that create Mach-O files are free to define additional section names.
These additional names do not appear in Table 1.

Data Types

This reference describes the data types that compose a Mach-O file. Values for integer types in all Mach-O data
structures are written using the host CPU’s byte ordering scheme, except for fat_header (page 64) and
fat_arch (page 65), which are written in big-endian byte order.

Header Data Structure

mach_header

Specifies the general attributes of a file. Appears at the beginning of object files targeted to 32-bit architectures.
Declared in /usr/include/mach-o/ loader.h. See also mach_header_64 (page 13).

2009-02-04 | Copyright © 2003, 2009 Apple Inc. All Rights Reserved.

9

0S X ABI Mach-O File Format Reference
Data Types

struct mach_header

{

uint32_t magic;
cpu_type_t cputype;
cpu_subtype_t cpusubtype;
uint32_t filetype;
uint32_t ncmds;

uint32_t sizeofcmds;
uint32_t flags;

i
Fields
magic
An integer containing a value identifying this file as a 32-bit Mach-O file. Use the constant MH_MAGIC if
the file is intended for use on a CPU with the same endianness as the computer on which the compiler
is running. The constant MH_CIGAM can be used when the byte ordering scheme of the target machine
is the reverse of the host CPU.
cputype
An integer indicating the architecture you intend to use the file on. Appropriate values include:
= CPU_TYPE_POWERPC to target PowerPC-based Macintosh computers
- CPU_TYPE_I386 to target the Intel-based Macintosh computers
cpusubtype

An integer specifying the exact model of the CPU. To run on all PowerPC or x86 processors supported
by the OS X kernel, this should be set to CPU_SUBTYPE_POWERPC_ALL or CPU_SUBTYPE_I386_ALL.

2009-02-04 | Copyright © 2003, 2009 Apple Inc. All Rights Reserved.

10

0S X ABI Mach-O File Format Reference

Data Types

filetype

An integer indicating the usage and alignment of the file. Valid values for this field include:

ncmds

The MH_OBJECT file type is the format used for intermediate object files. It is a very compact format
containing all its sections in one segment. The compiler and assembler usually create one MH_0BJECT
file for each source code file. By convention, the file name extension for this format is . 0.

The MH_EXECUTE file type is the format used by standard executable programs.

The MH_BUNDLE file type is the type typically used by code that you load at runtime (typically called
bundles or plug-ins). By convention, the file name extension for this format is . bundle.

The MH_DYLIB file type is for dynamic shared libraries. It contains some additional tables to support
multiple modules. By convention, the file name extension for this format is . dy 1ib, except for the
main shared library of a framework, which does not usually have a file name extension.

The MH_PRELOAD file type is an executable format used for special-purpose programs that are not
loaded by the OS X kernel, such as programs burned into programmable ROM chips. Do not confuse
this file type with the MH_PREBOUND flag, which is a flag that the static linker sets in the header
structure to mark a prebound image.

The MH_CORE file type is used to store core files, which are traditionally created when a program
crashes. Core files store the entire address space of a process at the time it crashed. You can later
run gdb on the core file to figure out why the crash occurred.

The MH_DYLINKER file type is the type of a dynamic linker shared library. This is the type of the
dy ld file.

The MH_DSYM file type designates files that store symbol information for a corresponding binary
file.

An integer indicating the number of load commands following the header structure.

sizeofcmds

An integer indicating the number of bytes occupied by the load commands following the header structure.

2009-02-04 | Copyright © 2003, 2009 Apple Inc. All Rights Reserved.

1

0S X ABI Mach-O File Format Reference

Data Types

flags

An integer containing a set of bit flags that indicate the state of certain optional features of the Mach-O

file format. These are the masks you can use to manipulate this field:

MH_NOUNDEFS—The object file contained no undefined references when it was built.

MH_INCRLINK—The object file is the output of an incremental link against a base file and cannot
be linked again.

MH_DYLDLINK—The file is input for the dynamic linker and cannot be statically linked again.
MH_TWOLEVEL—The image is using two-level namespace bindings.

MH_BINDATLOAD—The dynamic linker should bind the undefined references when the file is loaded.
MH_PREBOUND —The file’s undefined references are prebound.

MH_PREBINDABLE—This file is not prebound but can have its prebinding redone. Used only when
MH_PREBEOUND is not set.

MH_NOFIXPREBINDING—The dynamic linker doesn’t notify the prebinding agent about this
executable.

MH_ALLMODSBOUND —Indicates that this binary binds to all two-level namespace modules of its
dependent libraries. Used only when MH_PREBINDABLE and MH_TWOLEVEL are set.

MH_CANONICAL—This file has been canonicalized by unprebinding—clearing prebinding information
from the file. See the redo_prebinding man page for details.

MH_SPLIT_SEGS—The file has its read-only and read-write segments split.
MH_FORCE_FLAT—The executable is forcing all images to use flat namespace bindings.

MH_SUBSECTIONS_VIA_SYMBOLS—The sections of the object file can be divided into individual
blocks. These blocks are dead-stripped if they are not used by other code. See Linking for details.

MH_NOMULTIDEFS—This umbrella guarantees there are no multiple definitions of symbols in its
subimages. As a result, the two-level namespace hints can always be used.

Special Considerations
For all file types, except MH_OBJECT, segments must be aligned on page boundaries for the given CPU

architecture: 4096 bytes for PowerPC and x86 processors. This allows the kernel to page virtual memory directly

from the segment into the address space of the process. The header and load commands must be aligned as

part of the data of the first segment stored on disk (which would be the __TEXT segment, in the file types

described in filetype).

Availability
Available in OS X v10.6 and later.

2009-02-04 | Copyright © 2003, 2009 Apple Inc. All Rights Reserved.

12

0S X ABI Mach-O File Format Reference
Data Types

Declared in
loader.h

mach_header 64

Defines the general attributes of a file targeted for a 64-bit architecture. Declared in
/usr/include/mach-o/loader. h.

struct mach_header_64

{

uint32_t magic;
cpu_type_t cputype;
cpu_subtype_t cpusubtype;
uint32_t filetype;
uint32_t ncmds;

uint32_t sizeofcmds;
uint32_t flags;

uint32_t reserved;

b
Fields
magic
An integer containing a value identifying this file as a 64-bit Mach-O file. Use the constant MH_MAGIC_64
if the file is intended for use on a CPU with the same endianness as the computer on which the compiler
is running. The constantMH_CIGAM_64 can be used when the byte ordering scheme of the target machine
is the reverse of the host CPU.
cputype
An integer indicating the architecture you intend to use the file on. The only appropriate value for this
structure is:
= CPU_TYPE_x86_64 to target 64-bit Intel-based Macintosh computers.
= CPU_TYPE_POWERPC64 to target 64-bit PowerPC-based Macintosh computers.
cpusubtype

An integer specifying the exact model of the CPU. To run on all PowerPC processors supported by the
OS X kernel, this should be set to CPU_SUBTYPE_POWERPC_ALL.

2009-02-04 | Copyright © 2003, 2009 Apple Inc. All Rights Reserved.

13

0S X ABI Mach-O File Format Reference

Data Types

filetype

An integer indicating the usage and alignment of the file. Valid values for this field include:

ncmds

The MH_OBJECT file type is the format used for intermediate object files. It is a very compact format
containing all its sections in one segment. The compiler and assembler usually create one MH_OBJECT
file for each source code file. By convention, the file name extension for this format is . o.

The MH_EXECUTE file type is the format used by standard executable programs.

The MH_BUNDLE file type is the type typically used by code that you load at runtime (typically called
bundles or plug-ins). By convention, the file name extension for this format is . bundle.

The MH_DYLIB file type is for dynamic shared libraries. It contains some additional tables to support
multiple modules. By convention, the file name extension for this format is . dy 1ib, except for the
main shared library of a framework, which does not usually have a file name extension.

The MH_PRELOAD file type is an executable format used for special-purpose programs that are not
loaded by the OS X kernel, such as programs burned into programmable ROM chips. Do not confuse
this file type with the MH_PREBOUND flag, which is a flag that the static linker sets in the header
structure to mark a prebound image.

The MH_CORE file type is used to store core files, which are traditionally created when a program
crashes. Core files store the entire address space of a process at the time it crashed. You can later
run gdb on the core file to figure out why the crash occurred.

The MH_DYLINKER file type is the type of a dynamic linker shared library. This is the type of the
dyld file.

The MH_DSYM file type designates files that store symbol information for a corresponding binary
file.

An integer indicating the number of load commands following the header structure.

sizeofcmds

An integer indicating the number of bytes occupied by the load commands following the header structure.

2009-02-04 | Copyright © 2003, 2009 Apple Inc. All Rights Reserved.

14

0S X ABI Mach-O File Format Reference
Data Types

flags
An integer containing a set of bit flags that indicate the state of certain optional features of the Mach-O
file format. These are the masks you can use to manipulate this field:

= MH_NOUNDEFS—The object file contained no undefined references when it was built.

= MH_INCRLINK—The object file is the output of an incremental link against a base file and cannot
be linked again.

» MH_DYLDLINK—The file is input for the dynamic linker and cannot be statically linked again.

= MH_TWOLEVEL—The image is using two-level namespace bindings.

= MH_BINDATLOAD—The dynamic linker should bind the undefined references when the file is loaded.
- MH_PREBOUND —The file's undefined references are prebound.

- MH_PREBINDABLE—This file is not prebound but can have its prebinding redone. Used only when
MH_PREBEOUND is not set.

» MH_NOFIXPREBINDING—The dynamic linker doesn’t notify the prebinding agent about this
executable.

= MH_ALLMODSBOUND —Indicates that this binary binds to all two-level namespace modules of its
dependent libraries. Used only when MH_PREBINDABLE and MH_TWOLEVEL are set.

= MH_CANONICAL—THhis file has been canonicalized by unprebinding—clearing prebinding information
from the file. See the redo_prebinding man page for details.

» MH_SPLIT_SEGS—The file has its read-only and read-write segments split.
» MH_FORCE_FLAT—The executable is forcing all images to use flat namespace bindings.

= MH_SUBSECTIONS_VIA_SYMBOLS—The sections of the object file can be divided into individual
blocks. These blocks are dead-stripped if they are not used by other code. See “Linking” for details.

= MH_NOMULTIDEFS—This umbrella guarantees there are no multiple definitions of symbols in its
subimages. As a result, the two-level namespace hints can always be used.

reserved
Reserved for future use.

Special Considerations
See comment in mach_header (page 9)

Availability
Available in OS X v10.6 and later.

Declared in
loader.h

2009-02-04 | Copyright © 2003, 2009 Apple Inc. All Rights Reserved.

15

0S X ABI Mach-O File Format Reference
Data Types

Load Command Data Structures

The load command structures are located directly after the header of the object file, and they specify both the
logical structure of the file and the layout of the file in virtual memory. Each load command begins with fields
that specify the command type and the size of the command data.

load_command

Contains fields that are common to all load commands.

struct load_command

{
uint32_t cmd;

uint32_t cmdsize;

i

Fields

cmd
An integer indicating the type of load command. Table 4 lists the valid load command types.

cmdsize
An integer specifying the total size in bytes of the load command data structure. Each load command
structure contains a different set of data, depending on the load command type, so each might have a
different size. In 32-bit architectures, the size must always be a multiple of 4; in 64-bit architectures, the
size must always be a multiple of 8. If the load command data does not divide evenly by 4 or 8 (depending
on whether the target architecture is 32-bit or 64-bit, respectively), add bytes containing zeros to the
end until it does.

Discussion

Table 4 lists the valid load command types, with links to the full data structures for each type.

Table 4 Mach-O load commands
Commands Data structures Purpose
LC_UUID uuid_command (page 19) Specifies the 128-bit UUID for an
image or its corresponding dSYM file.
LC_SEGMENT segment_command (page 19) Defines a segment of this file to be

mapped into the address space of the
process that loads this file. It also
includes all the sections contained by
the segment.

2009-02-04 | Copyright © 2003, 2009 Apple Inc. All Rights Reserved.

16

0S X ABI Mach-O File Format Reference

Data Types

Commands

LC_SEGMENT_64

LC_SYMTAB

LC_DYSYMTAB

LC_THREAD
LC_UNIXTHREAD

LC_LOAD_DYLIB

LC_ID_DYLIB

LC_PREBOUND_DYLIB

LC_LOAD_DYLINKER

LC_ID_DYLINKER

Data structures

segment_command_64 (page 21)

symtab_command (page 44)

dysymtab_command (page 51)

thread_command (page 38)

dylib_command (page 35)

dylib_command (page 35)

prebound_dylib_command (page
37)

dylinker_command (page 36)

dylinker_command (page 36)

Purpose

Defines a 64-bit segment of this file
to be mapped into the address space
of the process that loads this file. It
also includes all the sections
contained by the segment.

Specifies the symbol table for this file.
This information is used by both static
and dynamic linkers when linking the
file, and also by debuggers to map
symbols to the original source code
files from which the symbols were
generated.

Specifies additional symbol table
information used by the dynamic
linker.

For an executable file, the
LC_UNIXTHREAD command defines
the initial thread state of the main
thread of the process. LC_THREAD is
similar to LC_UNIXTHREAD but does
not cause the kernel to allocate a
stack.

Defines the name of a dynamic
shared library that this file links
against.

Specifies the install name of a
dynamic shared library.

For a shared library that this
executable is linked prebound
against, specifies the modules in the
shared library that are used.

Specifies the dynamic linker that the
kernel executes to load this file.

Identifies this file as a dynamic linker.

2009-02-04 | Copyright © 2003, 2009 Apple Inc. All Rights Reserved.

17

0S X ABI Mach-O File Format Reference

Data Types

Commands

LC_ROUTINES

LC_ROUTINES_64

LC_TWOLEVEL_HINTS

LC_SUB_FRAMEWORK

LC_SUB_UMBRELLA

LC_SUB_LIBRARY

LC_SUB_CLIENT

Availability

Data structures

routines_command (page 38)

routines_command_64 (page 40)

twolevel_hints_command (page
31)

sub_framework_command (page
41)

sub_umbrella_command (page
42)

sub_library_command (page 42)

sub_client_command (page 43)

Available in OS X v10.6 and later.

Declared in
loader.h

Purpose

Contains the address of the shared
library initialization routine (specified
by the linker's —init option).

Contains the address of the shared
library 64-bit initialization routine
(specified by the linker's —init
option).

Contains the two-level namespace
lookup hint table.

Identifies this file as the
implementation of a subframework
of an umbrella framework. The name
of the umbrella framework is stored
in the string parameter.

Specifies a file that is a subumbrella
of this umbrella framework.

Defines the attributes of the
LC_SUB_LIBRARY load command.
Identifies a sublibrary of this
framework and marks this framework
as an umbrella framework.

A subframework can explicitly allow
another framework or bundle to link
against it by including an
LC_SUB_CLIENT load command
containing the name of the
framework or a client name for a
bundle.

2009-02-04 | Copyright © 2003, 2009 Apple Inc. All Rights Reserved.

18

0S X ABI Mach-O File Format Reference
Data Types

uuid_command

Specifies the 128-bit universally unique identifier (UUID) for an image or for its corresponding dSYM file.

struct uuid_command

{
uint32_t cmd;

uint32_t cmdsize;
uint8_t uuid[16];
}i

Fields
cmd
Set to LC_UUID for this structure.

cmdsize
Setto sizeof(uuid_command).

uuid
128-bit unique identifier.

Availability
Available in OS X v10.6 and later.

Declared in
loader.h

segment_command

Specifies the range of bytes in a 32-bit Mach-O file that make up a segment. Those bytes are mapped by the loader
into the address space of a program. Declared in /usr/include/mach—-o/loader. h. See also
segment_command_64 (page 21).

struct segment_command
{

uint32_t cmd;
uint32_t cmdsize;
char segname[16];
uint32_t vmaddr;
uint32_t vmsize;
uint32_t fileoff;
uint32_t filesize;
vim_prot_t maxprot;
vm_prot_t initprot;
uint32_t nsects;

2009-02-04 | Copyright © 2003, 2009 Apple Inc. All Rights Reserved.

19

0S X ABI Mach-O File Format Reference
Data Types

uint32_t flags;

b

Fields

cmd
Common to all load command structures. Set to LC_SEGMENT for this structure.

cmdsize
Common to all load command structures. For this structure, set this field to sizeof (segment_command)
plus the size of all the section data structures that follow (sizeof (segment_command +
(sizeof(section) * segment->nsect))).

segname
A C string specifying the name of the segment. The value of this field can be any sequence of ASCI
characters, although segment names defined by Apple begin with two underscores and consist of capital
letters (as in ___TEXT and __DATA). This field is fixed at 16 bytes in length.

vmaddr
Indicates the starting virtual memory address of this segment.

vmsize
Indicates the number of bytes of virtual memory occupied by this segment. See also the description of
filesize, below.

fileoff
Indicates the offset in this file of the data to be mapped at vmaddr.

filesize
Indicates the number of bytes occupied by this segment on disk. For segments that require more memory
at runtime than they do at build time, vmsize can be larger than filesize. For example, the _ PAGEZERO
segment generated by the linker for MH_EXECUTABLE files has a vmsize of 0x1000 but a filesize of
0. Because __PAGEZERO contains no data, there is no need for it to occupy any space until runtime. Also,
the static linker often allocates uninitialized data at the end of the __DATA segment; in this case, the
vmsize is larger than the filesize. The loader guarantees that any memory of this sort is initialized
with zeros.

maxprot
Specifies the maximum permitted virtual memory protections of this segment.

initprot
Specifies the initial virtual memory protections of this segment.

nsects

Indicates the number of section data structures following this load command.

2009-02-04 | Copyright © 2003, 2009 Apple Inc. All Rights Reserved.

20

0S X ABI Mach-O File Format Reference
Data Types

flags
Defines a set of flags that affect the loading of this segment:

» SG_HIGHVM—The file contents for this segment are for the high part of the virtual memory space;
the low part is zero filled (for stacks in core files).

= SG_NORELOC—This segment has nothing that was relocated in it and nothing relocated to it. It
may be safely replaced without relocation.

Special Considerations
Segments with sections of type S_GB_ZEROFILL are placed after all other segments. See section (page 23)
for additional information.

Availability
Available in OS X v10.6 and later.

Declared in
loader.h

segment_command_64

Specifies the range of bytes in a 64-bit Mach-O file that make up a segment. Those bytes are mapped by the loader
into the address space of a program. If the 64-bit segment has sections, they are defined by section_64 (page
27) structures. Declared in /usr/include/mach—-o/ loader. h.

struct segment_command_64
{

uint32_t cmd;
uint32_t cmdsize;
char segname[16];
uint64_t vmaddr;
uint64_t vmsize;
uint64_t fileoff;
uintée4_t filesize;
vm_prot_t maxprot;
vm_prot_t initprot;
uint32_t nsects;
uint32_t flags;

I

Fields
cmd
See description in segment_command (page 19). Set to LC_SEGMENT_64 for this structure.

2009-02-04 | Copyright © 2003, 2009 Apple Inc. All Rights Reserved.

21

0S X ABI Mach-O File Format Reference
Data Types

cmdsize
Common to all load command structures. For this structure, set this field to
sizeof (segment_command_64) plus the size of all the section data structures that follow
(sizeof(segment_command_64 + (sizeof(section_64) * segment->nsect))).

segname
A C string specifying the name of the segment. The value of this field can be any sequence of ASCII
characters, although segment names defined by Apple begin with two underscores and consist of capital
letters (as in ___TEXT and __DATA). This field is fixed at 16 bytes in length.

vmaddr
Indicates the starting virtual memory address of this segment.

vmsize
Indicates the number of bytes of virtual memory occupied by this segment. See also the description of
filesize, below.

fileoff
Indicates the offset in this file of the data to be mapped at vmaddr.

filesize
Indicates the number of bytes occupied by this segment on disk. For segments that require more memory
at runtime than they do at build time, vms ize can be larger than filesize. For example, the _ PAGEZERO
segment generated by the linker for MH_EXECUTABLE files has a vmsize of 0x1000 but a filesize of
0. Because __PAGEZERO contains no data, there is no need for it to occupy any space until runtime. Also,
the static linker often allocates uninitialized data at the end of the __DATA segment; in this case, the
vmsize is larger than the filesize. The loader guarantees that any memory of this sort is initialized
with zeros.

maxprot
Specifies the maximum permitted virtual memory protections of this segment.

initprot
Specifies the initial virtual memory protections of this segment.

nsects
Indicates the number of section data structures following this load command.

flags
Defines a set of flags that affect the loading of this segment:

» SG_HIGHVM—The file contents for this segment are for the high part of the virtual memory space;
the low part is zero filled (for stacks in core files).

= SG_NORELOC—This segment has nothing that was relocated in it and nothing relocated to it. It
may be safely replaced without relocation.

2009-02-04 | Copyright © 2003, 2009 Apple Inc. All Rights Reserved.

22

0S X ABI Mach-O File Format Reference
Data Types

Availability
Available in OS X v10.6 and later.

Declared in
loader.h

section

Defines the elements used by a 32-bit section. Directly following a segment_command data structure is an array
of sectiondata structures, with the exact count determined by the nsects field of the segment_command (page
19) structure. Declared in /usr/include/mach-o/loader.h. See also section_64 (page 27).

struct section

{

char sectname[16];
char segname[16];
uint32_t addr;
uint32_t size;
uint32_t offset;
uint32_t align;
uint32_t reloff;
uint32_t nreloc;
uint32_t flags;
uint32_t reservedl;
uint32_t reserved2;

b

Fields

sectname
A string specifying the name of this section. The value of this field can be any sequence of ASCII characters,
although section names defined by Apple begin with two underscores and consist of lowercase letters
(asin__text and __data). This field is fixed at 16 bytes in length.

segname
A string specifying the name of the segment that should eventually contain this section. For compactness,
intermediate object files—files of type MH_OBJECT —contain only one segment, in which all sections are
placed. The static linker places each section in the named segment when building the final product (any
file that is not of type MH_OBJECT).

addr
An integer specifying the virtual memory address of this section.

size

An integer specifying the size in bytes of the virtual memory occupied by this section.

2009-02-04 | Copyright © 2003, 2009 Apple Inc. All Rights Reserved.

23

0S X ABI Mach-O File Format Reference
Data Types

offset
An integer specifying the offset to this section in the file.

align
An integer specifying the section’s byte alignment. Specify this as a power of two; for example, a section
with 8-byte alignment would have an align value of 3 (2 to the 3rd power equals 8).

reloff
An integer specifying the file offset of the first relocation entry for this section.

nreloc
An integer specifying the number of relocation entries located at reloff for this section.

2009-02-04 | Copyright © 2003, 2009 Apple Inc. All Rights Reserved.

24

0S X ABI Mach-O File Format Reference

Data Types

flags

An integer divided into two parts. The least significant 8 bits contain the section type, while the most

significant 24 bits contain a set of flags that specify other attributes of the section. These types and flags

are primarily used by the static linker and file analysis tools, such as otoo1, to determine how to modify

or display the section. These are the possible types:

S_REGULAR—THhis section has no particular type. The standard tools create a __TEXT,__text
section of this type.

S_ZEROFILL—Zero-fill-on-demand section—when this section is first read from or written to, each
page within is automatically filled with bytes containing zero.

S_CSTRING_LITERALS—This section contains only constant C strings. The standard tools create
a_ TEXT,__cstring section of this type.

S_4BYTE_LITERALS—This section contains only constant values that are 4 bytes long. The standard
tools create a__ TEXT,__literal4 section of this type.

S_8BYTE_LITERALS—This section contains only constant values that are 8 bytes long. The standard
tools create a__ TEXT,__literal8 section of this type.

S_LITERAL_POINTERS—This section contains only pointers to constant values.

S_NON_LAZY_SYMBOL_POINTERS—This section contains only non-lazy pointers to symbols. The
standard tools create a section of the ___DATA, __n1l_symbol_ptrs section of this type.

S_LAZY_SYMBOL_POINTERS—This section contains only lazy pointers to symbols. The standard
tools create a __DATA, __la_symbol_ptrs section of this type.

S_SYMBOL_STUBS——This section contains symbol stubs. The standard tools create
_ _TEXT,__symbol_stuband __ TEXT,__picsymbol_stub sections of this type. See
“Position-Independent Code” in Mach-O Programming Topics for more information.

S_MOD_INIT_FUNC_POINTERS—This section contains pointers to module initialization functions.
The standard tools create _DATA,__mod_init_func sections of this type.

S_MOD_TERM_FUNC_POINTERS —This section contains pointers to module termination functions.
The standard tools create __DATA, __mod_term_func sections of this type.

S_COALESCED—This section contains symbols that are coalesced by the static linker and possibly
the dynamic linker. More than one file may contain coalesced definitions of the same symbol without
causing multiple-defined-symbol errors.

S_GB_ZEROFILL—This is a zero-filled on-demand section. It can be larger than 4 GB. This section
must be placed in a segment containing only zero-filled sections. If you place a zero-filled section
in a segment with non-zero-filled sections, you may cause those sections to be unreachable with

a 31-bit offset. That outcome stems from the fact that the size of a zero-filled section can be larger
than 4 GB (in a 32-bit address space). As a result of this, the static linker would be unable to build

the output file. See segment_command (page 19) for more information.

2009-02-04 | Copyright © 2003, 2009 Apple Inc. All Rights Reserved.

25

0S X ABI Mach-O File Format Reference

Data Types

The following are the possible attributes of a section:

S_ATTR_PURE_INSTRUCTIONS—This section contains only executable machine instructions. The
standard tools set this flag for the sections __TEXT,__text, _ TEXT,__symbol_stub, and
_ TEXT,__picsymbol_stub.

S_ATTR_SOME_INSTRUCTIONS—This section contains executable machine instructions.

S_ATTR_NO_TOC—This section contains coalesced symbols that must not be placed in the table
of contents (SYMDEF member) of a static archive library.

S_ATTR_EXT_RELOC—This section contains references that must be relocated. These references
refer to data that exists in other files (undefined symbols). To support external relocation, the
maximum virtual memory protections of the segment that contains this section must allow both
reading and writing.

S_ATTR_LOC_RELOC—This section contains references that must be relocated. These references
refer to data within this file.

S_ATTR_STRIP_STATIC_SYMS—The static symbols in this section can be stripped if the
MH_DYLDLINK flag of the image’s mach_header (page 9) header structure is set.

S_ATTR_NO_DEAD_STRIP—This section must not be dead-stripped. See “Linking” for details.

S_ATTR_LIVE_SUPPORT—This section must not be dead-stripped if they reference code that is
live, but the reference is undetectable.

reservedl

An integer reserved for use with certain section types. For symbol pointer sections and symbol stubs

sections that refer to indirect symbol table entries, this is the index into the indirect table for this section’s

entries. The number of entries is based on the section size divided by the size of the symbol pointer or
stub. Otherwise, this field is set to 0.

reserved?

For sections of type S_SYMBOL_STUBS, an integer specifying the size (in bytes) of the symbol stub entries

contained in the section. Otherwise, this field is reserved for future use and should be set to 0.

Discussion
Each section in a Mach-O file has both a type and a set of attribute flags. In intermediate object files, the type

and attributes determine how the static linker copies the sections into the final product. Object file analysis

tools (such as otoo1) use the type and attributes to determine how to read and display the sections. Some

section types and attributes are used by the dynamic linker.

These are important static-linking variants of the symbol type and attributes:

= Regular sections. In a regular section, only one definition of an external symbol may exist in intermediate

object files. The static linker returns an error if it finds any duplicate external symbol definitions.

2009-02-04 | Copyright © 2003, 2009 Apple Inc. All Rights Reserved.

26

0S X ABI Mach-O File Format Reference
Data Types

- Coalesced sections. In the final product, the static linker retains only one instance of each symbol defined
in coalesced sections. To support complex language features (such as C++ vtables and RTTI) the compiler
may create a definition of a particular symbol in every intermediate object file. The static linker and the
dynamic linker would then reduce the duplicate definitions to the single definition used by the program.

- Coalesced sections with weak definitions Weak symbol definitions may appear only in coalesced sections.
When the static linker finds duplicate definitions for a symbol, it discards any coalesced symbol definition
that has the weak definition attribute set (see nlist (page 45)). If there are no non-weak definitions, the
first weak definition is used instead. This feature is designed to support C++ templates; it allows explicit
template instantiations to override implicit ones. The C++ compiler places explicit definitions in a regular
section, and it places implicit definitions in a coalesced section, marked as weak definitions. Intermediate
object files (and thus static archive libraries) built with weak definitions can be used only with the static
linker in OS X v10.2 and later. Final products (applications and shared libraries) should not contain weak
definitions if they are expected to be used on earlier versions of OS X.

Availability
Available in OS X v10.6 and later.

Declared in
loader.h

section_64

Defines the elements used by a 64-bit section. Directly following a segment_command_64 (page 21) data structure
is an array of section_64 data structures, with the exact count determined by the nsects field of the
segment_command_64 structure. Declared in /usr/include/mach—-o/loader. h.

struct section_64

{

char sectname[16];
char segname[16];
uint64_t addr;
uint64_t size;
uint32_t offset;
uint32_t align;
uint32_t reloff;
uint32_t nreloc;
uint32_t flags;
uint32_t reservedl;
uint32_t reserved2;

}i

2009-02-04 | Copyright © 2003, 2009 Apple Inc. All Rights Reserved.

27

0S X ABI Mach-O File Format Reference
Data Types

Fields
sectname

A string specifying the name of this section. The value of this field can be any sequence of ASCII characters,
although section names defined by Apple begin with two underscores and consist of lowercase letters
(asin__text and __data). This field is fixed at 16 bytes in length.

segname
A string specifying the name of the segment that should eventually contain this section. For compactness,
intermediate object files—files of type MH_OBJECT —contain only one segment, in which all sections are
placed. The static linker places each section in the named segment when building the final product (any
file that is not of type MH_OBJECT).

addr
An integer specifying the virtual memory address of this section.

size
An integer specifying the size in bytes of the virtual memory occupied by this section.

offset
An integer specifying the offset to this section in the file.

align
An integer specifying the section’s byte alignment. Specify this as a power of two; for example, a section
with 8-byte alignment would have an align value of 3 (2 to the 3rd power equals 8).

reloff

An integer specifying the file offset of the first relocation entry for this section.

nreloc

An integer specifying the number of relocation entries located at reloff for this section.

2009-02-04 | Copyright © 2003, 2009 Apple Inc. All Rights Reserved.

28

0S X ABI Mach-O File Format Reference

Data Types

flags

An integer divided into two parts. The least significant 8 bits contain the section type, while the most

significant 24 bits contain a set of flags that specify other attributes of the section. These types and flags

are primarily used by the static linker and file analysis tools, such as otoo1, to determine how to modify

or display the section. These are the possible types:

S_REGULAR—THhis section has no particular type. The standard tools create a __TEXT,__text
section of this type.

S_ZEROFILL—Zero-fill-on-demand section—when this section is first read from or written to, each
page within is automatically filled with bytes containing zero.

S_CSTRING_LITERALS—This section contains only constant C strings. The standard tools create
a_ TEXT,__cstring section of this type.

S_4BYTE_LITERALS—This section contains only constant values that are 4 bytes long. The standard
tools create a__ TEXT,__literal4 section of this type.

S_8BYTE_LITERALS—This section contains only constant values that are 8 bytes long. The standard
tools create a__ TEXT,__literal8 section of this type.

S_LITERAL_POINTERS—This section contains only pointers to constant values.

S_NON_LAZY_SYMBOL_POINTERS—This section contains only non-lazy pointers to symbols. The
standard tools create a section of the ___DATA, __n1l_symbol_ptrs section of this type.

S_LAZY_SYMBOL_POINTERS—This section contains only lazy pointers to symbols. The standard
tools create a __DATA, __la_symbol_ptrs section of this type.

S_SYMBOL_STUBS——This section contains symbol stubs. The standard tools create
_ _TEXT,__symbol_stuband __ TEXT,__picsymbol_stub sections of this type. See
“Position-Independent Code” in Mach-O Programming Topics for more information.

S_MOD_INIT_FUNC_POINTERS—This section contains pointers to module initialization functions.
The standard tools create _DATA,__mod_init_func sections of this type.

S_MOD_TERM_FUNC_POINTERS —This section contains pointers to module termination functions.
The standard tools create __DATA, __mod_term_func sections of this type.

S_COALESCED—This section contains symbols that are coalesced by the static linker and possibly
the dynamic linker. More than one file may contain coalesced definitions of the same symbol without
causing multiple-defined-symbol errors.

S_GB_ZEROFILL—This is a zero-filled on-demand section. It can be larger than 4 GB. This section
must be placed in a segment containing only zero-filled sections. If you place a zero-filled section
in a segment with non-zero-filled sections, you may cause those sections to be unreachable with

a 31-bit offset. That outcome stems from the fact that the size of a zero-filled section can be larger
than 4 GB (in a 32-bit address space). As a result of this, the static linker would be unable to build

the output file. See segment_command_64 (page 21) for more information.

2009-02-04 | Copyright © 2003, 2009 Apple Inc. All Rights Reserved.

29

0S X ABI Mach-O File Format Reference

Data Types

The following are the possible attributes of a section:

S_ATTR_PURE_INSTRUCTIONS—This section contains only executable machine instructions. The
standard tools set this flag for the sections __TEXT,__text, _ TEXT,__symbol_stub, and
_ TEXT,__picsymbol_stub.

S_ATTR_SOME_INSTRUCTIONS—This section contains executable machine instructions.

S_ATTR_NO_TOC—This section contains coalesced symbols that must not be placed in the table
of contents (SYMDEF member) of a static archive library.

S_ATTR_EXT_RELOC—This section contains references that must be relocated. These references
refer to data that exists in other files (undefined symbols). To support external relocation, the
maximum virtual memory protections of the segment that contains this section must allow both
reading and writing.

S_ATTR_LOC_RELOC—This section contains references that must be relocated. These references
refer to data within this file.

S_ATTR_STRIP_STATIC_SYMS—The static symbols in this section can be stripped if the
MH_DYLDLINK flag of the image’s mach_header (page 9) header structure is set.

S_ATTR_NO_DEAD_STRIP—This section must not be dead-stripped. See “Linking” for details.

S_ATTR_LIVE_SUPPORT—This section must not be dead-stripped if they reference code that is
live, but the reference is undetectable.

reservedl

An integer reserved for use with certain section types. For symbol pointer sections and symbol stubs

sections that refer to indirect symbol table entries, this is the index into the indirect table for this section’s

entries. The number of entries is based on the section size divided by the size of the symbol pointer or
stub. Otherwise, this field is set to 0.

reserved?

For sections of type S_SYMBOL_STUBS, an integer specifying the size (in bytes) of the symbol stub entries

contained in the section. Otherwise, this field is reserved for future use and should be set to 0.

Discussion
Each section in a Mach-O file has both a type and a set of attribute flags. In intermediate object files, the type

and attributes determine how the static linker copies the sections into the final product. Object file analysis

tools (such as otoo1) use the type and attributes to determine how to read and display the sections. Some

section types and attributes are used by the dynamic linker.

These are important static-linking variants of the symbol type and attributes:

= Regular sections. In a regular section, only one definition of an external symbol may exist in intermediate

object files. The static linker returns an error if it finds any duplicate external symbol definitions.

2009-02-04 | Copyright © 2003, 2009 Apple Inc. All Rights Reserved.

30

0S X ABI Mach-O File Format Reference
Data Types

- Coalesced sections. In the final product, the static linker retains only one instance of each symbol defined
in coalesced sections. To support complex language features (such as C++ vtables and RTTI) the compiler
may create a definition of a particular symbol in every intermediate object file. The static linker and the
dynamic linker would then reduce the duplicate definitions to the single definition used by the program.

- Coalesced sections with weak definitions Weak symbol definitions may appear only in coalesced sections.
When the static linker finds duplicate definitions for a symbol, it discards any coalesced symbol definition
that has the weak definition attribute set (see nlist (page 45)). If there are no non-weak definitions, the
first weak definition is used instead. This feature is designed to support C++ templates; it allows explicit
template instantiations to override implicit ones. The C++ compiler places explicit definitions in a regular
section, and it places implicit definitions in a coalesced section, marked as weak definitions. Intermediate
object files (and thus static archive libraries) built with weak definitions can be used only with the static
linker in OS X v10.2 and later. Final products (applications and shared libraries) should not contain weak
definitions if they are expected to be used on earlier versions of OS X.

Availability
Available in OS X v10.6 and later.

Declared in
loader.h

twolevel hints_command

Defines the attributes of a LC_TWOLEVEL HINTS load command. Declared in
/usr/include/mach-o/loader.h.

struct twolevel_hints_command

{
uint32_t cmd;

uint32_t cmdsize;
uint32_t offset;
uint32_t nhints;

+s

Fields
cmd
Common to all load command structures. Set to LC_TWOLEVEL_HINTS for this structure.

cmdsize
Common to all load command structures. For this structure, setto sizeof (twolevel_hints_command).

2009-02-04 | Copyright © 2003, 2009 Apple Inc. All Rights Reserved.

31

0S X ABI Mach-O File Format Reference
Data Types

offset
An integer specifying the byte offset from the start of this file to an array of twolevel_hint (page 32)
data structures, known as the two-level namespace hint table.

nhints
The number of twolevel_hint data structures located at offset.

Discussion
The static linker adds the LC_TWOLEVEL_HINTS load command and the two-level namespace hint table to
the output file when building a two-level namespace image.

Special Considerations

By default, 1d does not include the LC_TWOLEVEL_HINTS command or the two-level namespace hint table
in an MH_BUNDLE file because the presence of this load command causes the version of the dynamic linker
shipped with OS X v10.0 to crash. If you know the code will run only on OS X v10.1 and later, you should
explicitly enable the two-level namespace hint table. See —twolevel_namespace_hints inthe 1d man page
for more information.

Availability
Available in OS X v10.6 and later.

Declared in
loader.h

twolevel _hint

Specifies an entry in the two-level namespace hint table. Declared in /usr/include/mach-o/loader.h.

struct twolevel_hint

{

uint32_t isub_image:8,
itoc:24;

}i

Fields

isub_image
The subimage in which the symbol is defined. It is an index into the list of images that make up the
umbrella image. If this field is 0, the symbol is in the umbrella image itself. If the image is not an umbrella
framework or library, this field is 0.

itoc
The symbol index into the table of contents of the image specified by the isub_image field.

2009-02-04 | Copyright © 2003, 2009 Apple Inc. All Rights Reserved.

32

0S X ABI Mach-O File Format Reference
Data Types

Discussion
The two-level namespace hint table provides the dynamic linker with suggested positions to start searching
for symbols in the libraries the current image is linked against.

Every undefined symbol (that is, every symbol of type N_UNDF or N_PBUD) in a two-level namespace image
has a corresponding entry in the two-level hint table, at the same index.

The static linker adds the LC_TWOLEVEL_HINTS load command and the two-level namespace hint table to
the output file when building a two-level namespace image.

By default, the linker does not include the LC_TWOLEVEL_HINTS command or the two-level namespace hint
table in an MH_BUNDLE file, because the presence of this load command causes the version of the dynamic
linker shipped with OS X v10.0 to crash. If you know the code will run only on OS X v10.1 and later, you should
explicitly enable the two-level namespace hints. See the linker documentation for more information.

Availability
Available in OS X v10.6 and later.

Declared in
loader.h

Ic_str

Defines a variable-length string. Declared in /usr/include/mach—o/loader.h.

union lc_str

{
uint32_t offset;

#ifndef __LP64__
char xptr;
#endif

+s

Fields

offset
A long integer. A byte offset from the start of the load command that contains this string to the start of
the string data.

ptr
A pointer to an array of bytes. At runtime, this pointer contains the virtual memory address of the string
data. The ptr field is not used in Mach-O files.

2009-02-04 | Copyright © 2003, 2009 Apple Inc. All Rights Reserved.

33

0S X ABI Mach-O File Format Reference
Data Types

Discussion
Load commands store variable-length data such as library names using the 1c_str data structure. Unless
otherwise specified, the data consists of a C string.

The data pointed to is stored just after the load command, and the size is added to the size of the load command.
The string should be null terminated; any extra bytes to round up the size should be null. You can also determine
the size of the string by subtracting the size of the load command data structure from the cmdsize field of
the load command data structure.

Availability
Available in OS X v10.6 and later.

Declared in
loader.h

dylib

Defines the data used by the dynamic linker to match a shared library against the files that have linked to it. Used
exclusively in the dylib_command (page 35) data structure. Declared in /usr/include/mach—-o/loader. h.

struct dylib
{

union lc_str name;
uint_32 timestamp;
uint_32 current_version;
uint_32 compatibility_version;

+s

Fields
name
A data structure of type lc_str (page 33). Specifies the name of the shared library.

timestamp
The date and time when the shared library was built.

current_version
The current version of the shared library.

compatibility_version

The compatibility version of the shared library.

Availability
Available in OS X v10.6 and later.

2009-02-04 | Copyright © 2003, 2009 Apple Inc. All Rights Reserved.

34

0S X ABI Mach-O File Format Reference
Data Types

Declared in
loader.h

dylib_command

Defines the attributes of the LC_LOAD_DYLIB and LC_ID DYLIB load commands. Declared in
/usr/include/mach-o/loader.h.

struct dylib_command
{

uint_32 cmd;

uint_32 cmdsize;
struct dylib dylib;

I
Fields
cmd
Common to all load command structures. For this structure, set to either LC_LOAD_DYLIB,
LC_LOAD_WEAK_DYLIB, or LC_ID_DYLIB.
cmdsize
Common to all load command structures. For this structure, set to sizeof (dylib_command) plus the
size of the data pointed to by the name field of the dy lib field.
dylib
A data structure of type dylib (page 34). Specifies the attributes of the shared library.
Discussion

For each shared library that a file links against, the static linker creates an LC_LOAD_DYLIB command and sets
its dy 1ib field to the value of the dy lib field of the LC_ID_DYLD load command of the target library. All the
LC_LOAD_DYLIB commands together form a list that is ordered according to location in the file, earliest
LC_LOAD_DYLIB command first. For two-level namespace files, undefined symbol entries in the symbol table
refer to their parent shared libraries by index into this list. The index is called a library ordinal, and it is stored
in the n_desc field of the nlist (page 45) data structure.

At runtime, the dynamic linker uses the name in the dy1d field of the LC_LOAD_DYLIB command to locate
the shared library. If it finds the library, the dynamic linker compares the version information of the
LC_LOAD_DYLIB load command against the library’s version. For the dynamic linker to successfully link the
shared library, the compatibility version of the shared library must be less than or equal to the compatibility
version in the LC_LOAD_DYLIB command.

2009-02-04 | Copyright © 2003, 2009 Apple Inc. All Rights Reserved.

35

0S X ABI Mach-O File Format Reference
Data Types

The dynamic linker uses the timestamp to determine whether it can use the prebinding information. The
current version is returned by the function NSVersionOfRunTimeLibrary to allow you to determine the
version of the library your program is using.

Availability
Available in OS X v10.6 and later.

Declared in
loader.h

dylinker_command

Defines the attributes of the LC_LOAD_DYLINKER and LC_ID _DYLINKER load commands. Declared in
/usr/include/mach-o/loader.h.

struct dylinker_command
{

uint32_t cmd;

uint32_t cmdsize;

union lc_str name;

I
Fields
cmd
Common to all load command structures. For this structure, set to either LC_ID DYLINKER or
LC_LOAD_DYLINKER.
cmdsize
Common to all load command structures. For this structure, set to sizeof (dylinker_command), plus
the size of the data pointed to by the name field.
name
A data structure of type lc_str (page 33). Specifies the name of the dynamic linker.
Discussion

Every executable file that is dynamically linked contains a LC_LOAD_DYLINKER command that specifies the
name of the dynamic linker that the kernel must load in order to execute the file. The dynamic linker itself
specifies its name using the LC_ID_DYLINKER load command.

Availability
Available in OS X v10.6 and later.

2009-02-04 | Copyright © 2003, 2009 Apple Inc. All Rights Reserved.

36

0S X ABI Mach-O File Format Reference
Data Types

Declared in
loader.h

prebound_dylib_command

Defines the attributes of the LC_PREBOUND_DYL IB load command. For every library that a prebound executable
file links to, the static linker adds one LC_PREBOUND_DYLIB command. Declared in
/usr/include/mach-o/loader.h.

struct prebound_dylib_command

{
uint32_t cmd;

uint32_t cmdsize;
union lc_str name;
uint32_t nmodules;
union lc_str linked_modules;

}i

Fields
cmd
Common to all load command structures. For this structure, set to LC_PREBOUND_DYLIB.

cmdsize
Common to all load command structures. For this structure, setto sizeof (prebound_dylib_command)
plus the size of the data pointed to by the name and linked_modules fields.

name
A data structure of type 1c_str (page 33). Specifies the name of the prebound shared library.

nmodules
An integer. Specifies the number of modules the prebound shared library contains. The size of the
linked_modules string is (nmodules / 8) + (nmodules % 8).

linked_modules
A data structure of type lc_str (page 33). Usually, this data structure defines the offset of a C string; in
this usage, it is a variable-length bitset, containing one bit for each module. Each bit represents whether
the corresponding module is linked to a module in the current file, 1 for yes, 0 for no. The bit for the first
module is the low bit of the first byte.

Availability
Available in OS X v10.6 and later.

Declared in
loader.h

2009-02-04 | Copyright © 2003, 2009 Apple Inc. All Rights Reserved.

37

0S X ABI Mach-O File Format Reference
Data Types

thread command

Defines the attributes of the LC_THREAD and LC_UNIXTHREAD load commands. The data of this command is
specific to each architecture and appears in thread_status. h, located in the architecture’s directory in
/usr/include/mach. Declared in /usr/include/mach-o/loader.h

struct thread_command

{

uint32_t cmd;

uint32_t cmdsize;

/* uint32_t flavor;*/

/* uint32_t count; *x/

/* struct cpu_thread_state state;x/

i
Fields
cmd
Common to all load command structures. For this structure, set to LC_THREAD or LC_UNIXTHREAD.
cmdsize
Common to all load command structures. For this structure, setto sizeof (thread_command) plus the
size of the flavor and count fields plus the size of the CPU-specific thread state data structure.
flavor
Integer specifying the particular flavor of the thread state data structure. See the thread_status.hfile
for your target architecture.
count
Size of the thread state data, in number of 32-bit integers. The thread state data structure must be fully
padded to 32-bit alignment.
Availability

Available in OS X v10.6 and later.

Declared in
loader.h

routines_command

Defines the attributes of the LC_ROUTINES load command, used in 32-bit architectures. Describes the location
of the shared library initialization function, which is a function that the dynamic linker calls before allowing any
of the routines in the library to be called. Declared in /usr/include/mach-o/loader.h. See also
routines_command_64 (page 40).

2009-02-04 | Copyright © 2003, 2009 Apple Inc. All Rights Reserved.

38

0S X ABI Mach-O File Format Reference
Data Types

struct routines_command

{
uint32_t cmd;

uint32_t cmdsize;
uint32_t init_address;
uint32_t init_module;
uint32_t reservedl;
uint32_t reserved2;
uint32_t reserved3;
uint32_t reserved4;
uint32_t reserved5;
uint32_t reserved6;

+s

Fields
cmd
Common to all load command structures. For this structure, set to LC_ROUTINES.

cmdsize
Common to all load command structures. For this structure, set to sizeof (routines_command).

init_address
An integer specifying the virtual memory address of the initialization function.

init_module
An integer specifying the index into the module table of the module containing the initialization function.

reservedl
Reserved for future use. Set this field to 0.

reserved?
Reserved for future use. Set this field to 0.

reserved3
Reserved for future use. Set this field to 0.

reserved4
Reserved for future use. Set this field to 0.

reserved5
Reserved for future use. Set this field to 0.

reserved6
Reserved for future use. Set this field to 0.

Discussion
The static linker adds an LC_ROUTINES command when you specify a shared library initialization function
using the —init option (see the 1d man page for more information).

2009-02-04 | Copyright © 2003, 2009 Apple Inc. All Rights Reserved.

39

0S X ABI Mach-O File Format Reference
Data Types

Availability
Available in OS X v10.6 and later.

Declared in
loader.h

routines_command_64

Defines the attributes ofthe LC_ROUTINES_ 64 load command, usedin 64-bitarchitectures. Describes the location
of the shared library initialization function, which is a function that the dynamic linker calls before allowing any
of the routines in the library to be called. Declared in /usr/include/mach-o/loader. h.

struct routines_command_64

{

uint32_t cmd;
uint32_t cmdsize;
uint64_t init_address;
uint64_t init_module;
uint64_t reservedl;
uint64_t reserved2;
uint64_t reserved3;
uint64_t reserved4;
uint64_t reserved5;
uint64_t reserved6;

+s

Fields
cmd
Common to all load command structures. For this structure, set to LC_ROUTINES_64.

cmdsize
Common to all load command structures. For this structure, set to sizeof (routines_command_64).

init_address
An integer specifying the virtual memory address of the initialization function.

init_module
An integer specifying the index into the module table of the module containing the initialization function.

reservedl
Reserved for future use. Set this field to 0.

reserved?2
Reserved for future use. Set this field to 0.

2009-02-04 | Copyright © 2003, 2009 Apple Inc. All Rights Reserved.

40

0S X ABI Mach-O File Format Reference
Data Types

reserved3
Reserved for future use. Set this field to 0.

reserved4
Reserved for future use. Set this field to 0.

reserved5
Reserved for future use. Set this field to 0.

reserved6
Reserved for future use. Set this field to 0.

Discussion
The static linker adds an LC_ROUTINES_64 command when you specify a shared library initialization function
using the —init option (see the 1d man page for more information).

Availability
Available in OS X v10.6 and later.

Declared in
loader.h

sub_framework _command

Defines the attributes of the LC_SUB_FRAMEWORK load command. Identifies the umbrella framework of which
this file is a subframework. Declared in /usr/include/mach—o/ loader. h.

struct sub_framework_command
{

uint32_t cmd;

uint32_t cmdsize;

union lc_str umbrella;

b

Fields

cmd
Common to all load command structures. For this structure, set to LC_SUB_FRAMEWORK.

cmdsize
Common to all load command structures. For this structure, setto sizeof (sub_framework_command)
plus the size of the data pointed to by the umbrel1la field.

umbrella

A data structure of type lc_str (page 33). Specifies the name of the umbrella framework of which this
file is a member.

2009-02-04 | Copyright © 2003, 2009 Apple Inc. All Rights Reserved.

41

0S X ABI Mach-O File Format Reference
Data Types

Availability
Available in OS X v10.6 and later.

Declared in
loader.h

sub_umbrella_command

Definestheattributesofthe LC_SUB_UMBREL LA load command.ldentifiesthenamed frameworkasasubumbrella
of this framework. Unlike a subframework, any client may link to a subumbrella. Declared in
/usr/include/mach-o/loader. h.

struct sub_umbrella_command

{

uint32_t cmd;

uint32_t cmdsize;

union lc_str sub_umbrella;

+s

Fields
cmd
Common to all load command structures. For this structure, set to LC_SUB_UMBRELLA.

cmdsize
Common to all load command structures. For this structure, set to sizeof (sub_umbrella_command)
plus the size of the data pointed to by the sub_umbrella field.

sub_umbrella
A data structure of type lc_str (page 33). Specifies the name of the umbrella framework of which this
file is a member.

Availability
Available in OS X v10.6 and later.

Declared in
loader.h

sub_library_command

Defines the attributes of the LC_SUB_LIBRARY load command. Identifies a sublibrary of this framework and
marks this framework as an umbrella framework. Unlike a subframework, any client may link to a sublibrary.
Declared in /usr/include/mach-o/loader.h.

2009-02-04 | Copyright © 2003, 2009 Apple Inc. All Rights Reserved.

42

0S X ABI Mach-O File Format Reference
Data Types

struct sub_library_command

{
uint32_t cmd;

uint32_t cmdsize;
union lc_str sub_library;

+s

Fields
cmd
Common to all load command structures. For this structure, set to LC_SUB_LIBRARY.

cmdsize
Common to all load command structures. For this structure, set to sizeof (sub_library_command)
plus the size of the data pointed to by the sub_1library field.

sub_library
A data structure of type lc_str (page 33). Specifies the name of the sublibrary of which this file is a
member.

Availability
Available in OS X v10.6 and later.

Declared in
loader.h

sub_client_command

Defines the attributes of the LC_SUB_CLIENT load command. Specifies the name of a file that is allowed to link
to this subframework. This file would otherwise be required to link to the umbrella framework of which this file
is a component. Declared in /usr/include/mach-o/loader.h.

struct sub_client_command

{
uint32_t cmd;

uint32_t cmdsize;
union lc_str client;

}i

Fields
cmd
Common to all load command structures. For this structure, set to LC_SUB_CLIENT.

2009-02-04 | Copyright © 2003, 2009 Apple Inc. All Rights Reserved.

43

0S X ABI Mach-O File Format Reference
Data Types

cmdsize
Common to all load command structures. For this structure, set to sizeof (sub_client_command)
plus the size of the data pointed to by the client field.

client
A data structure of type lc_str (page 33). Specifies the name of a client authorized to link to this library.

Special Considerations

The 1d tool generates a sub_client_command load command in the built product if you pass the option
—-allowable_client <name>, where <name> is the install name of a framework or the client name of a
bundle. See the 1d man page, specifically about the options —allowable_client and —client_name, for
more information.

Availability
Available in OS X v10.6 and later.

Declared in
loader.h

Symbol Table and Related Data Structures

Two load commands, LC_SYMTAB and LC_DYSYMTAB, describe the size and location of the symbol tables,
along with additional metadata. The other data structures listed in this section represent the symbol tables
themselves.

symtab_command

Defines the attributes of the LC_SYMTAB load command. Describes the size and location of the symbol table data
structures. Declared in /usr/include/mach—o/loader.h.

struct symtab_command
{

uint_32 cmd;

uint_32 cmdsize;
uint_32 symoff;
uint_32 nsyms;
uint_32 stroff;
uint_32 strsize;

}s

2009-02-04 | Copyright © 2003, 2009 Apple Inc. All Rights Reserved.

44

0S X ABI Mach-O File Format Reference
Data Types

Fields
cmd
Common to all load command structures. For this structure, set to LC_SYMTAB.

cmdsize
Common to all load command structures. For this structure, set to sizeof (symtab_command).

symoff
An integer containing the byte offset from the start of the file to the location of the symbol table entries.
The symbol table is an array of nlist (page 45) data structures.

nsyms
An integer indicating the number of entries in the symbol table.

stroff
An integer containing the byte offset from the start of the image to the location of the string table.

strsize
An integer indicating the size (in bytes) of the string table.

Discussion
LC_SYMTAB should exist in both statically linked and dynamically linked file types.

Availability
Available in OS X v10.6 and later.

Declared in
loader.h

nlist

Describes an entry in the symbol table for 32-bit architectures. Declared in /usr/include/mach-o/nlist.h.
Seealsonlist_64 (page 48).

struct nlist
{
union {
#ifndef __LP64__
char xn_name;
#endif
int32_t n_strx;
} n_un;
uint8_t n_type;
uint8_t n_sect;
intl6_t n_desc;

2009-02-04 | Copyright © 2003, 2009 Apple Inc. All Rights Reserved.

45

0S X ABI Mach-O File Format Reference

Data Types

uint32_t n_value;

}s

Fields
n_un

A union that holds an index into the string table, n_strx. To specify an empty string ("'"'), set this value
to 0. The n_name field is not used in Mach-O files.

n_type

A byte value consisting of data accessed using four bit masks:

N_STAB (0xe0)—If any of these 3 bits are set, the symbol is a symbolic debugging table (stab)
entry. In that case, the entire n_type field is interpreted as a stab value. See
/usr/include/mach-o/stab. h for valid stab values.

N_PEXT (0x10)—If this bit is on, this symbol is marked as having limited global scope. When the
file is fed to the static linker, it clears the N_EXT bit for each symbol with the N_PEXT bit set. (The
1d option —keep_private_externs turns off this behavior.) With OS X GCC, you can use the
__private_extern__ function attribute to set this bit.

N_TYPE (0x0e)—These bits define the type of the symbol.

N_EXT (0x01)—If this bit is on, this symbol is an external symbol, a symbol that is either defined
outside this file or that is defined in this file but can be referenced by other files.

Values for the N_TYPE field include:

n_sect

N_UNDF (0x0)—The symbol is undefined. Undefined symbols are symbols referenced in this module
but defined in a different module. The n_sect field is set to NO_SECT.

N_ABS (0x2)—The symbol is absolute. The linker does not change the value of an absolute symbol.
The n_sect field is set to NO_SECT.

N_SECT (0xe)—The symbol is defined in the section number given in n_sect.

N_PBUD (0xc)—The symbol is undefined and the image is using a prebound value for the symbol.
The n_sect field is set to NO_SECT.

N_INDR (Oxa)—The symbol is defined to be the same as another symbol. The n_value field is an
index into the string table specifying the name of the other symbol. When that symbol is linked,
both this and the other symbol have the same defined type and value.

An integer specifying the number of the section that this symbol can be found in, or NO_SECT if the

symbol is not to be found in any section of this image. The sections are contiguously numbered across

segments, starting from 1, according to the order they appear in the LC_SEGMENT load commands.

2009-02-04 | Copyright © 2003, 2009 Apple Inc. All Rights Reserved.

46

0S X ABI Mach-O File Format Reference

Data Types

n_desc

A 16-bit value providing additional information about the nature of this symbol for non-stab symbols.

The reference flags can be accessed using the REFERENCE_TYPE mask (0xF) and are defined as follows:

REFERENCE_FLAG_UNDEFINED_NON_LAZY (0x0)—This symbol is a reference to an external non-lazy
(data) symbol.

REFERENCE_FLAG_UNDEFINED_LAZY (0x1)—This symbol is a reference to an external lazy
symbol—that is, to a function call.

REFERENCE_FLAG_DEFINED (0x2)—This symbol is defined in this module.

REFERENCE_FLAG_PRIVATE_DEFINED (0x3)—This symbol is defined in this module and is visible
only to modules within this shared library.

REFERENCE_FLAG_PRIVATE_UNDEFINED_NON_LAZY (0x4)—This symbol is defined in another
module in this file, is a non-lazy (data) symbol, and is visible only to modules within this shared
library.

REFERENCE_FLAG_PRIVATE_UNDEFINED_LAZY (0x5)—This symbol is defined in another module
in this file, is a lazy (function) symbol, and is visible only to modules within this shared library.

Additionally, the following bits might also be set:

REFERENCED_DYNAMICALLY (0x10)—Must be set for any defined symbol that is referenced by
dynamic-loader APIs (such as dlsym and NSLookupSymbo1InImage) and not ordinary undefined
symbol references. The strip tool uses this bit to avoid removing symbols that must exist: If the
symbol has this bit set, strip does not strip it.

N_DESC_DISCARDED (0x20)—Sometimes used by the dynamic linker at runtime in a fully linked
image. Do not set this bit in a fully linked image.

N_NO_DEAD_STRIP(0x20)—When set in a relocatable object file (file type MH_OBJECT) on a defined
symbol, indicates to the static linker to never dead-strip the symbol. (Note that the same bit (0x20)
is used for two nonoverlapping purposes.)

N_WEAK_REF (0x40)—Indicates that this undefined symbol is a weak reference. If the dynamic linker
cannot find a definition for this symbol, it sets the address of this symbol to 0. The static linker sets
this symbol given the appropriate weak-linking flags.

N_WEAK_DEF (0x80)—Indicates that this symbol is a weak definition. If the static linker or the
dynamic linker finds another (non-weak) definition for this symbol, the weak definition is ignored.
Only symbols in a coalesced section (page 23) can be marked as a weak definition.

If this file is a two-level namespace image (that is, if the MH_TWOLEVEL flag of the mach_header structure

is set), the high 8 bits of n_desc specify the number of the library in which this undefined symbol is
defined. Use the macro GET_LIBRARY_ORDINAL to obtain this value and the macro
SET_LIBRARY_ORDINAL to set it. Zero specifies the current image. 1 through 253 specify the library
number according to the order of LC_LOAD_DYLIB commands in the file. The value 254 is used for

2009-02-04 | Copyright © 2003, 2009 Apple Inc. All Rights Reserved.

47

0S X ABI Mach-O File Format Reference
Data Types

undefined symbols that are to be dynamically looked up (supported only in OS X v10.3 and later). For
plug-ins that load symbols from the executable program they are linked against, 255 specifies the
executable image. For flat namespace images, the high 8 bits must be 0.

n_value
An integer that contains the value of the symbol. The format of this value is different for each type of
symbol table entry (as specified by the n_type field). For the N_SECT symbol type, n_value is the
address of the symbol. See the description of the n_type field for information on other possible values.

Discussion

Common symbols must be of type N_UNDF and must have the N_EXT bit set. The n_value for a common
symbol is the size (in bytes) of the data of the symbol. In C, a common symbol is a variable that is declared but
not initialized in this file. Common symbols can appear only in MH_0BJECT Mach-O files.

Availability
Available in OS X v10.8 and later.

Declared in
nlist.h

nlist_64

Describes an entry in the symbol table for 64-bit architectures. Declared in /usr/include/mach-o/nlist.h.

struct nlist_64
{

union {

uint32_t n_strx;
} n_un;
uint8_t n_type;
uint8_t n_sect;
uintl16_t n_desc;
uint64_t n_value;

}s

Fields

n_un
A union that holds an index into the string table, n_strx. To specify an empty string ("'"'), set this value
to 0.

2009-02-04 | Copyright © 2003, 2009 Apple Inc. All Rights Reserved.

48

0S X ABI Mach-O File Format Reference

Data Types

n_type

A byte value consisting of data accessed using four bit masks:

N_STAB (0xe0)—If any of these 3 bits are set, the symbol is a symbolic debugging table (stab)
entry. In that case, the entire n_type field is interpreted as a stab value. See
/usr/include/mach-o/stab. h for valid stab values.

N_PEXT (0x10)—If this bit is on, this symbol is marked as having limited global scope. When the
file is fed to the static linker, it clears the N_EXT bit for each symbol with the N_PEXT bit set. (The
1d option —keep_private_externs turns off this behavior.) With OS X GCC, you can use the
__private_extern__ function attribute to set this bit.

N_TYPE (0x0e)—These bits define the type of the symbol.

N_EXT (0x01)—If this bit is on, this symbol is an external symbol, a symbol that is either defined
outside this file or that is defined in this file but can be referenced by other files.

Values for the N_TYPE field include:

n_sect

N_UNDF (0x0)—The symbol is undefined. Undefined symbols are symbols referenced in this module
but defined in a different module. Set the n_sect field to NO_SECT.

N_ABS (0x2)—The symbol is absolute. The linker does not update the value of an absolute symbol.
Set the n_sect field to NO_SECT.

N_SECT (0xe)—The symbol is defined in the section number given in n_sect.

N_PBUD (0xc)—The symbol is undefined and the image is using a prebound value for the symbol.
Set the n_sect field to NO_SECT.

N_INDR (Oxa)—The symbol is defined to be the same as another symbol. The n_value field is an
index into the string table specifying the name of the other symbol. When that symbol is linked,
both this and the other symbol point to the same defined type and value.

An integer specifying the number of the section that this symbol can be found in, or NO_SECT if the

symbol is not to be found in any section of this image. The sections are contiguously numbered across

segments, starting from 1, according to the order they appear in the LC_SEGMENT load commands.

2009-02-04 | Copyright © 2003, 2009 Apple Inc. All Rights Reserved.

49

0S X ABI Mach-O File Format Reference

Data Types

n_desc

A 16-bit value providing additional information about the nature of this symbol. The reference flags can
be accessed using the REFERENCE_TYPE mask (0xF) and are defined as follows:

REFERENCE_FLAG_UNDEFINED_NON_LAZY (0x0)—This symbol is a reference to an external non-lazy
(data) symbol.

REFERENCE_FLAG_UNDEFINED_LAZY (0x1)—This symbol is a reference to an external lazy
symbol—that is, to a function call.

REFERENCE_FLAG_DEFINED (0x2)—This symbol is defined in this module.

REFERENCE_FLAG_PRIVATE_DEFINED (0x3)—This symbol is defined in this module and is visible
only to modules within this shared library.

REFERENCE_FLAG_PRIVATE_UNDEFINED_NON_LAZY (0x4)—This symbol is defined in another
module in this file, is a non-lazy (data) symbol, and is visible only to modules within this shared
library.

REFERENCE_FLAG_PRIVATE_UNDEFINED_LAZY (0x5)—This symbol is defined in another module
in this file, is a lazy (function) symbol, and is visible only to modules within this shared library.

Additionally, the following bits might also be set:

REFERENCED_DYNAMICALLY (0x10)—Must be set for any defined symbol that is referenced by
dynamic-loader APIs (such as dlsym and NSLookupSymbo1InImage) and not ordinary undefined
symbol references. The strip tool uses this bit to avoid removing symbols that must exist: If the
symbol has this bit set, strip does not strip it.

N_DESC_DISCARDED (0x20)—Used by the dynamic linker at runtime. Do not set this bit.

N_WEAK_REF (0x40)—Indicates that this symbol is a weak reference. If the dynamic linker cannot
find a definition for this symbol, it sets the address of this symbol to 0. The static linker sets this
symbol given the appropriate weak-linking flags.

N_WEAK_DEF (0x80)—Indicates that this symbol is a weak definition. If the static linker or the
dynamic linker finds another (non-weak) definition for this symbol, the weak definition is ignored.
Only symbols in a coalesced section (page 23) can be marked as a weak definition.

If this file is a two-level namespace image (that is, if the MH_TWOLEVEL flag of the mach_header structure

is set), the high 8 bits of n_desc specify the number of the library in which this symbol is defined. Use
the macro GET_LIBRARY_ORDINAL to obtain this value and the macro SET_LIBRARY_ORDINAL to set
it. Zero specifies the current image. 1 through 254 specify the library number according to the order of

LC_LOAD_DYLIB commands in the file. For plug-ins that load symbols from the executable program

they are linked against, 255 specifies the executable image. For flat namespace images, the high 8 bits

must be 0.

2009-02-04 | Copyright © 2003, 2009 Apple Inc. All Rights Reserved.

50

0S X ABI Mach-O File Format Reference
Data Types

n_value
An integer that contains the value of the symbol. The format of this value is different for each type of
symbol table entry (as specified by the n_type field). For the N_SECT symbol type, n_value is the
address of the symbol. See the description of the n_type field for information on other possible values.

Discussion
See discussion in nlist (page 45).

Availability
Available in OS X v10.8 and later.

Declared in
nlist.h

dysymtab_command

The data structure for the LC_DYSYMTAB load command. It describes the sizes and locations of the parts of the
symbol table used for dynamic linking. Declared in /usr/include/mach—o/loader. h.

struct dysymtab_command
{

uint32_t cmd;

uint32_t cmdsize;
uint32_t ilocalsym;
uint32_t nlocalsym;
uint32_t iextdefsym;
uint32_t nextdefsym;
uint32_t iundefsym;
uint32_t nundefsym;
uint32_t tocoff;
uint32_t ntoc;

uint32_t modtaboff;
uint32_t nmodtab;
uint32_t extrefsymoff;
uint32_t nextrefsyms;
uint32_t indirectsymoff;
uint32_t nindirectsyms;
uint32_t extreloff;
uint32_t nextrel;
uint32_t locreloff;
uint32_t nlocrel;

}s

2009-02-04 | Copyright © 2003, 2009 Apple Inc. All Rights Reserved.

51

0S X ABI Mach-O File Format Reference
Data Types

Fields
cmd
Common to all load command structures. For this structure, set to LC_DYSYMTAB.

cmdsize
Common to all load command structures. For this structure, set to sizeof (dysymtab_command).

ilocalsym
An integer indicating the index of the first symbol in the group of local symbols.
nlocalsym

An integer indicating the total number of symbols in the group of local symbols.

iextdefsym
An integer indicating the index of the first symbol in the group of defined external symbols.

nextdefsym
An integer indicating the total number of symbols in the group of defined external symbols.

iundefsym
An integer indicating the index of the first symbol in the group of undefined external symbols.

nundefsym
An integer indicating the total number of symbols in the group of undefined external symbols.

tocoff
An integer indicating the byte offset from the start of the file to the table of contents data.

ntoc
An integer indicating the number of entries in the table of contents.

modtaboff
An integer indicating the byte offset from the start of the file to the module table data.

nmodtab
An integer indicating the number of entries in the module table.

extrefsymoff
An integer indicating the byte offset from the start of the file to the external reference table data.

nextrefsyms
An integer indicating the number of entries in the external reference table.

indirectsymoff
An integer indicating the byte offset from the start of the file to the indirect symbol table data.

nindirectsyms
An integer indicating the number of entries in the indirect symbol table.

2009-02-04 | Copyright © 2003, 2009 Apple Inc. All Rights Reserved.

52

0S X ABI Mach-O File Format Reference
Data Types

extreloff
An integer indicating the byte offset from the start of the file to the external relocation table data.

nextrel
An integer indicating the number of entries in the external relocation table.

locreloff
An integer indicating the byte offset from the start of the file to the local relocation table data.

nlocrel
An integer indicating the number of entries in the local relocation table.

Discussion

The LC_DYSYMTAB load command contains a set of indexes into the symbol table and a set of file offsets that
define the location of several other tables. Fields for tables not used in the file should be set to 0. These tables
are described in “Position-Independent Code” in Mach-O Programming Topics.

Availability
Available in OS X v10.6 and later.

Declared in
loader.h

dylib_table_of_contents

Describes an entry in the table of contents of a dynamic shared library. Declared in
/usr/include/mach—-o/loader.h.

struct dylib_table_of_contents
{

uint32_t symbol_index;
uint32_t module_index;

}i

Fields
symbol_index
An index into the symbol table indicating the defined external symbol to which this entry refers.

module_index
An index into the module table indicating the module in which this defined external symbol is defined.

Availability
Available in OS X v10.6 and later.

2009-02-04 | Copyright © 2003, 2009 Apple Inc. All Rights Reserved.

53

0S X ABI Mach-O File Format Reference
Data Types

Declared in
loader.h

dylib_module

Describes a module table entry for a dynamic shared library for 32-bit architectures. Declared in
/usr/include/mach—-o/loader.h. See also dylib_module_64 (page 55).

struct dylib_module
{

uint32_t module_name;

uint32_t iextdefsym;

uint32_t nextdefsym;

uint32_t irefsym;

uint32_t nrefsym;

uint32_t ilocalsym;

uint32_t nlocalsym;

uint32_t iextrel;

uint32_t nextrel;

uint32_t iinit_iterm;

uint32_t ninit_nterm;

uint32_t objc_module_info_addr;
uint32_t objc_module_info_size;

+s

Fields
module_name
An index to an entry in the string table indicating the name of the module.

iextdefsym
The index into the symbol table of the first defined external symbol provided by this module.

nextdefsym
The number of defined external symbols provided by this module.

irefsym
The index into the external reference table of the first entry provided by this module.

nrefsym
The number of external reference entries provided by this module.

ilocalsym
The index into the symbol table of the first local symbol provided by this module.

nlocalsym
The number of local symbols provided by this module.

2009-02-04 | Copyright © 2003, 2009 Apple Inc. All Rights Reserved.

54

0S X ABI Mach-O File Format Reference
Data Types

iextrel
The index into the external relocation table of the first entry provided by this module.

nextrel
The number of entries in the external relocation table that are provided by this module.
iinit_iterm
Contains both the index into the module initialization section (the low 16 bits) and the index into the
module termination section (the high 16 bits) to the pointers for this module.

ninit_nterm
Contains both the number of pointers in the module initialization (the low 16 bits) and the number of
pointers in the module termination section (the high 16 bits) for this module.

objc_module_info_addr
The statically linked address of the start of the data for this module in the __module_info section in
the __0BJC segment.

objc_module_info_size
The number of bytes of data for this module that are used in the __module_info sectioninthe __0BJC
segment.

Availability
Available in OS X v10.6 and later.

Declared in
loader.h

dylib_module_64

Describes a module table entry for a dynamic shared library for 64-bit architectures. Declared in
/usr/include/mach—-o/loader.h.

struct dylib_module_64
{

uint32_t module_name;
uint32_t iextdefsym;
uint32_t nextdefsym;
uint32_t irefsym;
uint32_t nrefsym;
uint32_t ilocalsym;
uint32_t nlocalsym;
uint32_t iextrel;
uint32_t nextrel;
uint32_t iinit_iterm;
uint32_t ninit_nterm;

2009-02-04 | Copyright © 2003, 2009 Apple Inc. All Rights Reserved.

55

0S X ABI Mach-O File Format Reference
Data Types

uint32_t objc_module_info_size;
uint64_t objc_module_info_addr;

+s

Fields
module_name
An index to an entry in the string table indicating the name of the module.

iextdefsym
The index into the symbol table of the first defined external symbol provided by this module.

nextdefsym
The number of defined external symbols provided by this module.

irefsym
The index into the external reference table of the first entry provided by this module.

nrefsym
The number of external reference entries provided by this module.

ilocalsym
The index into the symbol table of the first local symbol provided by this module.

nlocalsym
The number of local symbols provided by this module.

iextrel
The index into the external relocation table of the first entry provided by this module.

nextrel
The number of entries in the external relocation table that are provided by this module.
iinit_iterm
Contains both the index into the module initialization section (the low 16 bits) and the index into the
module termination section (the high 16 bits) to the pointers for this module.

ninit_nterm
Contains both the number of pointers in the module initialization (the low 16 bits) and the number of
pointers in the module termination section (the high 16 bits) for this module.

objc_module_info_addr
The statically linked address of the start of the data for this module in the __module_info section in
the __0BJC segment.

objc_module_info_size
The number of bytes of data for this module that are used in the __module_info sectioninthe __0BJC
segment.

2009-02-04 | Copyright © 2003, 2009 Apple Inc. All Rights Reserved.

56

0S X ABI Mach-O File Format Reference
Data Types

Availability
Available in OS X v10.6 and later.

Declared in
loader.h

dylib_reference

Defines the attributes of an external reference table entry for the external reference entries provided by a module
in a shared library. Declared in /usr/include/mach-o/loader.h.

struct dylib_reference

{
uint32_t isym:24,
flags:8;
i
Fields
isym
An index into the symbol table for the symbol being referenced.
flags
A constant for the type of reference being made. Use the same REFERENCE_FLAG constants as described
in the nlist (page 45) structure description.
Availability

Available in OS X v10.6 and later.

Declared in
loader.h

Relocation Data Structures

Relocation is the process of moving symbols to a different address. When the static linker moves a symbol (a
function or an item of data) to a different address, it needs to change all the references to that symbol to use
the new address. The relocation entries in a Mach-O file contain offsets in the file to addresses that need to
be relocated when the contents of the file are relocated. The addresses stored in CPU instructions can be
absolute or relative. Each relocation entry specifies the exact format of the address. When creating the
intermediate object file, the compiler generates one or more relocation entries for every instruction that
contains an address. Because relocation to symbols at fixed addresses, and to relative addresses for position
independent references, does not occur at runtime, the static linker typically removes some or all the relocation
entries when building the final product.

2009-02-04 | Copyright © 2003, 2009 Apple Inc. All Rights Reserved.

57

0S X ABI Mach-O File Format Reference
Data Types

Note: Inthe OS X x86-64 environment scattered relocations are not used. Compiler-generated code
uses mostly external relocations, in which the r_extern bit is set to 1 and the r_symbolnum field
contains the symbol-table index of the target label.

relocation_info

Describes an item in the file that uses an address that needs to be updated when the address is changed. Declared
in/usr/include/mach-o/reloc.h.

struct relocation_info

{

int32_t r_address;
uint32_t r_symbolnum:24,
r_pcrel:1,

r_length:2,

r_extern:1,

r_type:4;

b

Fields

r_address
In MH_OBJECT files, this is an offset from the start of the section to the item containing the address
requiring relocation. If the high bit of this field is set (which you can check using the R_SCATTERED bit
mask), the relocation_info structure is actually a scattered_relocation_info (page 62) structure.

In images used by the dynamic linker, this is an offset from the virtual memory address of the data of the
first segment_command (page 19) that appears in the file (not necessarily the one with the lowest address).
For images with the MH_SPLIT_SEGS flag set, this is an offset from the virtual memory address of data
of the first read/write segment_command (page 19).

r_symbolnum
Indicates either an index into the symbol table (when the r_extern field is set to 1) or a section number
(when the r_extern field is set to 0). As previously mentioned, sections are ordered from 1 to 255 in
the order in which they appear in the LC_SEGMENT load commands. This field is set to R_ABS for relocation
entries for absolute symbols, which need no relocation.

r_pcrel

Indicates whether the item containing the address to be relocated is part of a CPU instruction that uses
PC-relative addressing.

For addresses contained in PC-relative instructions, the CPU adds the address of the instruction to the
address contained in the instruction.

2009-02-04 | Copyright © 2003, 2009 Apple Inc. All Rights Reserved.

58

0S X ABI Mach-O File Format Reference
Data Types

r_length
Indicates the length of the item containing the address to be relocated. The following table lists r_length
values and the corresponding address length.

Value Address length

0 1 byte

1 2 bytes

2 4 bytes

3 4 bytes. See description for the PPC_RELOC_BR14 r_type in

scattered_relocation_info (page 62).

r_extern
Indicates whether the r_symbolnum field is an index into the symbol table (1) or a section number (0).

2009-02-04 | Copyright © 2003, 2009 Apple Inc. All Rights Reserved.

59

0S X ABI Mach-O File Format Reference

Data Types

r_type

For the x86 environment, the r_type field may contain any of these values:

GENERIC_RELOC_VANILLA—A generic relocation entry for both addresses contained in data and
addresses contained in CPU instructions.

GENERIC_RELOC_PAIR—The second relocation entry of a pair.

GENERIC_RELOC_SECTDIFF—A relocation entry for an item that contains the difference of two
section addresses. This is generally used for position-independent code generation.
GENERIC_RELOC_SECTDIFF contains the address from which to subtract; it must be followed by
a GENERIC_RELOC_PAIR containing the address to subtract.

GENERIC_RELOC_LOCAL_SECTDIFF—Similar to GENERIC_RELOC_SECTDIFF except that this
entry refers specifically to the address in this item. If the address is that of a globally visible coalesced
symbol, this relocation entry does not change if the symbol is overridden. This is used to associate
stack unwinding information with the object code this relocation entry describes.

GENERIC_RELOC_PB_LA_PTR—A relocation entry for a prebound lazy pointer. This is always a
scattered relocation entry. The r_value field contains the non-prebound value of the lazy pointer.

For the x86-64 environment, the r_type field may contain any of these values:

X86_64_RELOC_BRANCH—A CALL/JMP instruction with 32-bit displacement.
X86_64_RELOC_GOT_LOAD—A MOVQ load of a GOT entry.

X86_64_RELOC_GOT—Other GOT references.

X86_64_RELOC_SIGNED—Signed 32-bit displacement.
X86_64_RELOC_UNSIGNED—Absolute address.

X86_64_RELOC_SUBTRACTOR—Must be followed by a X86_64_RELOC_UNSIGNED relocation.

For PowerPC environments, the r_type field is usually PPC_RELOC_VANILLA for addresses contained
in data. Relocation entries for addresses contained in CPU instructions are described by other r_type

values:

PPC_RELOC_PAIR—The second relocation entry of a pair. A PPC_RELOC_PAIR entry must follow
each of the other relocation entry types, except for PPC_RELOC_VANILLA, PPC_RELOC_BR14,
PPC_RELOC_BR24, and PPC_RELOC_PB_LA_PTR.

PPC_RELOC_BR14—The instruction contains a 14-bit branch displacement. If the r_lengthis 3,
the branch was statically predicted by setting or clearing the Y bit depending on the sign of the
displacement or the opcode.

PPC_RELOC_BR24—The instruction contains a 24-bit branch displacement.

2009-02-04 | Copyright © 2003, 2009 Apple Inc. All Rights Reserved.

60

0S X ABI Mach-O File Format Reference

Data Types

PPC_RELOC_HI16—The instruction contains the high 16 bits of a relocatable expression. The next
relocation entry must be a PPC_RELOC_PAIR specifying the low 16 bits of the expression in the
low 16 bits of the r_value field.

PPC_RELOC_L016—The instruction contains the low 16 bits of an address. The next relocation
entry must be a PPC_RELOC_PAIR specifying the high 16 bits of the expression in the low (not the
high) 16 bits of the r_value field.

PPC_RELOC_HA16—Same as the PPC_RELOC_HI16 except the low 16 bits and the high 16 bits
are added together with the low 16 bits sign-extended first. This means if bit 15 of the low 16 bits
is set, the high 16 bits stored in the instruction are adjusted.

PPC_RELOC_L014—Same as PPC_RELOC_L016 except that the low 2 bits are not stored in the
CPU instruction and are always 0. PPC_RELOC_L014 is used in 64-bit load/store instructions.

PPC_RELOC_SECTDIFF—A relocation entry for an item that contains the difference of two section
addresses. This is generally used for position-independent code generation. PPC_RELOC_SECTDIFF
contains the address from which to subtract; it must be followed by a PPC_RELOC_PAIR containing
the section address to subtract.

PPC_RELOC_LOCAL_SECTDIFF—Similar to PPC_RELOC_SECTDIFF except that this entry refers
specifically to the address in this item. If the address is that of a globally visible coalesced symbol,
this relocation entry does not change if the symbol is overridden. This is used to associate stack
unwinding information with the object code this relocation entry describes

PPC_RELOC_PB_LA_PTR—A relocation entry for a prebound lazy pointer. This is always a scattered
relocation entry. The r_value field contains the non-prebound value of the lazy pointer.

PPC_RELOC_HI16_SECTDIFF—Section difference form of PPC_RELOC_HI16.
PPC_RELOC_LO16_SECTDIFF—Section difference form of PPC_RELOC_LO016.
PPC_RELOC_HA16_SECTDIFF—Section difference form of PPC_RELOC_HA16.

PPC_RELOC_JBSR—A relocation entry for the assembler synthetic opcode jbsr, which is a 24-bit
branch-and-link instruction using a branch island. The branch displacement is assembled to the
branch island address and the relocation entry indicates the actual target symbol. If the linker is
able to make the branch reach the actual target symbol, it does. Otherwise, the branch is relocated
to the branch island.

PPC_RELOC_L014_SECTDIFF—Section difference form of PPC_RELOC_L014.

Availability
Available in OS X v10.8 and later.

Declared in

reloc.h

2009-02-04 | Copyright © 2003, 2009 Apple Inc. All Rights Reserved.

61

0S X ABI Mach-O File Format Reference
Data Types

scattered_relocation_info

Describes an item in the file-using a nonzero constant in its relocatable expression or two addresses in its
relocatable expression-that needs to be updated if the addresses that it uses are changed. This information is
needed to reconstruct the addresses that make up the relocatable expression’s value in order to change the
addresses independently of each other. Declared in /usr/include/mach-o/reloc.h.

struct scattered_relocation_info

{
#ifdef _ BIG_ENDIAN__

uint32_t r_scattered:1,
r_pcrel:1,

r_length:2,

r_type:4,

r_address:24;

int32_t r_value;

#endif /* __BIG_ENDIAN__ x/
#ifdef __ LITTLE_ENDIAN_
uint32_t r_address:24,
r_type:4,

r_length:2,

r_pcrel:1,

r_scattered:1;

int32_t r_value;

#endif /x __LITTLE_ENDIAN__ s/

}i

Fields
r_scattered
If this bit is 0, this structure is actually a relocation_info (page 58) structure.

r_address
In MH_OBJECT files, this is an offset from the start of the section to the item containing the address
requiring relocation. If the high bit of this field is clear (which you can check using the R_SCATTERED bit
mask), this structure is actually a relocation_info (page 58) structure.

In images used by the dynamic linker, this is an offset from the virtual memory address of the data of the
first segment_command (page 19) that appears in the file (not necessarily the one with the lowest address).
For images with the MH_SPLIT_SEGS flag set, this is an offset from the virtual memory address of data
of the first read/write segment_command (page 19).

Since this field is only 24 bits long, the offset in this field can never be larger than 0xO0FFFFFF, thus
limiting the size of the relocatable contents of this image to 16 megabytes.

2009-02-04 | Copyright © 2003, 2009 Apple Inc. All Rights Reserved.

62

0S X ABI Mach-O File Format Reference
Data Types

r_pcrel

Indicates whether the item containing the address to be relocated is part of a CPU instruction that uses
PC-relative addressing.

For addresses contained in PC-relative instructions, the CPU adds the address of the instruction to the
address contained in the instruction.

r_length

Indicates the length of the item containing the address to be relocated. A value of 0 indicates a single
byte; a value of 1 indicates a 2-byte address, and a value of 2 indicates a 4-byte address.

r_type
Indicates the type of relocation to be performed. Possible values for this field are shared between this
structure and the relocation_info data structure; see the description of the r_type field in the
relocation_info (page 58) data structure for more details.

r_value
The address of the relocatable expression for the item in the file that needs to be updated if the address
is changed. For relocatable expressions with the difference of two section addresses, the address from
which to subtract (in mathematical terms, the minuend) is contained in the first relocation entry and the
address to subtract (the subtrahend) is contained in the second relocation entry.

Discussion
Mach-O relocation data structures support two types of relocatable expressions in machine code and data:

= Symbol address + constant. The most typical form of relocation is referencing a symbol’s address with
no constant added. In this case, the value of the constant expression is 0.

= Address of section y — address of section x + constant. The section difference form of relocation. This
form of relocation supports position-independent code.

Availability
Available in OS X v10.8 and later.

Declared in
reloc.h

Universal Binaries and 32-bit/64-bit PowerPC Binaries
The standard development tools accept as parameters two kinds of binaries:
« Object files targeted at one architecture. These include Mach-O files, static libraries, and dynamic libraries.

- Binaries targeted at more than one architecture. These binaries contain compiled code and data for one
of these system types:

2009-02-04 | Copyright © 2003, 2009 Apple Inc. All Rights Reserved.

63

0S X ABI Mach-O File Format Reference
Data Types

» PowerPC-based (32-bit and 64-bit) Macintosh computers. Binaries that contain code for both 32-bit
and 64-bit PowerPC-based Macintosh computers are are known as PPC/PPC64 binaries.

» Intel-based and PowerPC-based (32-bit, 64-bit, or both) Macintosh computers. Binaries that contain
code for both Intel-based and PowerPC-based Macintosh computers are known as universal binaries.

Each object file is stored as a continuous set of bytes at an offset from the beginning of the binary. They
use a simple archive format to store the two object files with a special header at the beginning of the file
to allow the various runtime tools to quickly find the code appropriate for the current architecture.

A binary that contains code for more than one architecture always begins with a fat_header (page 64) data
structure, followed by two fat_arch (page 65) data structures and the actual data for the architectures
contained in the file. All data in these data structures is stored in big-endian byte order.

fat_header

Defines the layout of a binary that contains code for more than one architecture. Declared in the header
/usr/include/mach-o/fat.h.

struct fat_header

{

uint32_t magic;
uint32_t nfat_arch;
}i

Fields

magic
An integer containing the value @xCAFEBABE in big-endian byte order format. On a big-endian host CPU,
this can be validated using the constant FAT_MAGIC; on a little-endian host CPU, it can be validated
using the constant FAT_CIGAM.

nfat_arch
An integer specifying the number of fat_arch (page 65) data structures that follow. This is the number
of architectures contained in this binary.

Discussion

The fat_header data structure is placed at the start of a binary that contains code for multiple architectures.
Directly following the fat_header data structure is a set of fat_arch (page 65) data structures, one for each
architecture included in the binary.

Regardless of the content this data structure describes, all its fields are stored in big-endian byte order.

2009-02-04 | Copyright © 2003, 2009 Apple Inc. All Rights Reserved.

64

0S X ABI Mach-O File Format Reference
Data Types

Availability
Available in OS X v10.8 and later.

Declared in
fat.h

fat_arch

Describes the location within the binary of an object file targeted at a single architecture. Declared in
/usr/include/mach-o/fat.h.

struct fat_arch

{

cpu_type_t cputype;
cpu_subtype_t cpusubtype;
uint32_t offset;

uint32_t size;

uint32_t align;

i

Fields

Cputype
An enumeration value of type cpu_type_t. Specifies the CPU family.

cpusubtype
An enumeration value of type cpu_subtype_t. Specifies the specific member of the CPU family on
which this entry may be used or a constant specifying all members.

offset
Offset to the beginning of the data for this CPU.

size
Size of the data for this CPU.

align
The power of 2 alignment for the offset of the object file for the architecture specified in cputype within
the binary. This is required to ensure that, if this binary is changed, the contents it retains are correctly
aligned for virtual memory paging and other uses.

Discussion

An array of fat_arch data structures appears directly after the fat_header (page 64) data structure of a
binary that contains object files for multiple architectures.

Regardless of the content this data structure describes, all its fields are stored in big-endian byte order.

2009-02-04 | Copyright © 2003, 2009 Apple Inc. All Rights Reserved.

65

0S X ABI Mach-O File Format Reference
Data Types

Availability
Available in OS X v10.8 and later.

Declared in
fat.h

2009-02-04 | Copyright © 2003, 2009 Apple Inc. All Rights Reserved.

66

Document Revision History

This table describes the changes to OS X ABI Mach-O File Format Reference.

Date

2009-02-04

2007-04-26

2006-10-03

2006-09-05

2006-03-08

2005-11-09

Notes

Made minor changes.

Added details about Mach-O files targeted for the OS X x86-64
environment.

Added relocation details to “Relocation Data Structures” (page 57).
Updated the cputype field of the mach_header_64 (page 13) structure.
Updated the r_type bit of the relocation_info (page 58) structure.

Added DWARF debugging-format information to the introduction.

Added information about the uuid_command load command.

Added uuid_command (page 19) and updated load_command (page 16).

Added information about IA-32-specific structures and the file type for
dSYM files.
Corrected the mach_header_64 description.

Replaced cross-references to “Indirect Addressing” throughout to
cross-references to “Position-Independent Code” in Mach-O Programming
Topics.

Removed CPU_SUBTYPE_I386_ALL from the description for the
cpusubtype field of mach_header_64 (page 13).
Changed title from "Mach-O File Format Reference."

Added the phrase “Mac app binary interface (ABI) to the introduction to
raise this document’s visibility in searches.

2009-02-04 | Copyright © 2003, 2009 Apple Inc. All Rights Reserved.

67

Document Revision History

Date

2005-08-1

2005-04-29

2004-08-31

Notes

Clarified terminology for binaries that contain object files for more than
one architecture.

Added information on 64-bit support in the Mach-O file format. Removed
the "Overview of the Runtime Architecture" and "Runtime Conventions
for PowerPC" chapters. That content was placed in "OS X Runtime
Overview" and "PowerPC Runtime Programming Guide," respectively.

Changed title to Mach-O File Format Reference.

Updated symbol declarations to match headers.

Added information on parameter passing, section names, dynamic linking
of libraries, dead-code stripping flags, and GPR11. Removed dynamic
linking functions reference. Minor technical and editorial corrections
throughout.

Added information on MH_SUBSECTIONS_VIA_SYMBOLS flag to
mach_header (page 9) struct.

Added information on the S_ATTR_STRIP_STATIC_SYMS,
S_ATTR_LIVE_SUPPORT,and S_ATTR_NO_DEAD_STRIP flags to
section (page 23) struct.

Added explanation of PPC_RELOC_L014_SECTDIFF to
scattered_relocation_info (page 62).

Added clarification on when callers put parameters in the stack, in addition
to placing them in registers. See .

Added details on parameter passing for single-member structures. See
32-bit PowerPC Function Calling Conventions.

Refined description of GPR11. See 32-bit PowerPC Function Calling
Conventions.

Specified correct sizes for composite parameters that are preceded by
padding to make them 4 bytes in size. See 32-bit PowerPC Function Calling
Conventions.

2009-02-04 | Copyright © 2003, 2009 Apple Inc. All Rights Reserved.

68

Document Revision History

Date

2003-08-07

2003-01-01

2002-07-01

2002-05-01

Notes

Added note to “Introduction” (page 4) indicating that compilers can
define additional section names that are not shown in Table 1 (page 8).

Corrected example of a private external symbol. See Mach-O Programming
Topics.

Corrected ranges for unsigned int, unsigned long, and unsigned
long long,and vector unsigned int.See 32-bit PowerPC Function
Calling Conventions.

Corrected framework-building example. See Mach-O Programming Topics .

Removed “Mach-O Dynamic Linking Functions Reference” chapter and
placed its content in Mach-O Runtime Reference.

Added description of new API for OS X version 10.3.

Incorporated developer feedback. Updated code-generation examples.

Fixed bugs 2462895, 2749339, 2909989, 2910422, 2921574.

More developer feedback. Document weak definitions and weak references
(new for 10.2). Substantially update the glossary. Other tweaks and
additional material. Clarify common vs. coalesced symbol definitions.

ABI: Rewrote position-independent and indirect code section,
incorporating correct examples and separating PIC and indirect code
generation. Add C99 _Bool data type. See “32-bit PowerPC Function
Calling Conventions”.

Fixed bugs 2909989, 2910422, and 2921574.

This was a preliminary draft distributed with the WWDC 2002 developer
tools.

Incorporated many corrections from developer review. More to come.

2009-02-04 | Copyright © 2003, 2009 Apple Inc. All Rights Reserved.

69

Document Revision History

Date Notes

By popular demand, added some common usage scenarios to map runtime
features to the options in the standard OS X tools that implement those
features. To satisfy a related popular demand, this information is collected
in a separate chapter, which allows users of third-party tool sets to ignore
it. This chapter is currently unfinished, and the overview chapter is yet to
be modified to cross-reference it.

Updated umbrella framework description to better match reality.

Added long doubleand long long return value information. Removed
last vestiges of CFM. Rewrote data alignment section, incorporating the
correct rules (inherited from IBM’s x Lc compiler) for power alignment
mode, and adding new natural alignment mode.

2002-04-01 This was a preliminary draft distributed with the April 2002 Developer
Tools CD.

2009-02-04 | Copyright © 2003, 2009 Apple Inc. All Rights Reserved.

70

[

Apple Inc.

Copyright © 2003, 2009 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any
form or by any means, mechanical, electronic,
photocopying, recording, or otherwise, without
prior written permission of Apple Inc., with the
following exceptions: Any person is hereby
authorized to store documentation on a single
computer for personal use only and to print
copies of documentation for personal use
provided that the documentation contains
Apple’s copyright notice.

No licenses, express or implied, are granted with
respect to any of the technology described in this
document. Apple retains all intellectual property
rights associated with the technology described
in this document. This document is intended to
assist application developers to develop
applications only for Apple-labeled computers.

Apple Inc.

1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Mac, Macintosh,
Objective-C, OS X, and Xcode are trademarks of
Apple Inc,, registered in the U.S. and other
countries.

Intel and Intel Core are registered trademarks of
Intel Corporation or its subsidiaries in the United
States and other countries.

PowerPC and the PowerPC logo are trademarks
of International Business Machines Corporation,
used under license therefrom.

UNIX is a registered trademark of The Open
Group.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THIS
DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS PROVIDED
“AS IS,” AND YOU, THE READER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS DOCUMENT, even if advised of
the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple dealer,
agent, or employee is authorized to make any
modification, extension, or addition to this warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have other
rights which vary from state to state.

	OS X ABI Mach-O File Format Reference
	Contents
	Figures and Tables
	OS X ABI Mach-O File Format Reference
	Overview
	Basic Structure
	Header Structure and Load Commands
	Segments
	Sections

	Data Types
	Header Data Structure
	mach_header
	mach_header_64

	Load Command Data Structures
	load_command
	uuid_command
	segment_command
	segment_command_64
	section
	section_64
	twolevel_hints_command
	twolevel_hint
	lc_str
	dylib
	dylib_command
	dylinker_command
	prebound_dylib_command
	thread_command
	routines_command
	routines_command_64
	sub_framework_command
	sub_umbrella_command
	sub_library_command
	sub_client_command

	Symbol Table and Related Data Structures
	symtab_command
	nlist
	nlist_64
	dysymtab_command
	dylib_table_of_contents
	dylib_module
	dylib_module_64
	dylib_reference

	Relocation Data Structures
	relocation_info
	scattered_relocation_info

	Universal Binaries and 32-bit/64-bit PowerPC Binaries
	fat_header
	fat_arch

	Revision History

